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Abstract 

Kinds of stateful stream process engines (SPEs) track a large number of concurrent 

flow states and replicate them to backups to provide reliable functionality in high 

availability clusters (HACs). Under high traffic loads, existing solutions in such HACs 

are expensive because of precise stateful replication. In this dissertation, I study a 

suite of two methods to address this issue: randomization on replication messages 

and a replication scheme designed for when system is going to be overloaded.  

Two new hierarchical structures called Flow Digest (FD) and Multi-Level Counting 

Bloom Filter (MLCBF) are proposed as low resource-consuming solutions of stateful 

replication. To the best of my knowledge, it is the first time that randomization has 

been introduced for stateful replication of HAC in the literature. Analysis and 

extensive tests are employed to evaluate performance and tradeoffs of the proposed 

techniques. Most importantly, MLCBF is quite as simple and practical to implement 

and maintain.  

Furthermore, an adaptive scheme, called as dynamic lazy insertion, is designed to 

prevent replication from overloading system and optimize pass-through performance 

of HAC dynamically. Testbed evaluation demonstrates its feasibility and effectiveness 

in real situation. 
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1. Introduction 

High Availability Clusters (HACs) are widely deployed on the highly-valuable links (e.g., 

the highest bandwidth links) of enterprises, campuses, and ISP networks. Fig. 1 

shows that an HAC is composed of a number of stateful stream processing engines 

(SPEs) [1],[2] that process input stream (e.g., assembled TCP segments or URL 

requests) continuously, perform stateful tracking by finite state machine (FSMs), and 

produce output in real-time. Many stateful SPEs only need a simple key-and-state 

storage (called as state table) to manage the stateful results (i.e., states) of 

continuous tracking. If such state is lost, SPE will not possibly return an expected 

output. 

In HAC, the SPEs of identical functionality (e.g., traffic classification and intrusion 

prevention) must cooperate to handle a failure and flow migration due to load 

balancing [3]. Because the computation of stateful SPE can be considered as 

deterministic (i.e., the same output by the same sequence of input [4]), SPE can 

produce correct output by owning the tracking result so far of a flow. Thus, SPE 

utilizes passive replication [5],[6] to synchronize the state changes to its backup SPEs 

to ensure consistent service from the point of views of end hosts.  

As shown in Fig. 1, all SPEs in HAC share a LAN reserved for replication in practice 

and employ replication management protocol (RMP) to maintain state consistency. 

Yet, the efficiency of replication is critical for the performance of SPEs and HAC. My 

study on real testbed shows that replication using precise update messages can incur 

considerable resource costs, including CPU, memory, and bandwidth requirements. 

Under heavy traffic loads, an HAC certainly will not scale well with the maximum 

deployment number of SPEs because high bandwidth traffic on replication. Second, 

the pass-through throughput of HAC is limited to the minimum performance of a 
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sequence of SPEs on a pass-through link. SPE not only processes pass-through input 

stream, but also synchronizes its state information over network and stores incoming 

replicas to state table. I find that resource contention inside SPE between 

pass-through and replication tasks impedes the performance severely. However, 

pass-through processing must be optimized for the overall performance of HAC. 

In this dissertation, my focus is to provide an efficient RMP for key-and-state 

replication amongst SPEs in HAC. Two kinds of stateful replication are considered: 

state-machine replication (or state replication) and membership replication (e.g., 

[7],[8],[9],[10]). State replication refers to the task of synchronizing the key and state 

transition (e.g., from 2 to 8) of an active flow (or item) to the backup SPEs. The 

flow-state change is in the range of 0 and NN  (state 0 indicates a deletion). In 

membership replication, the information whether a flow is in-set or not is 

propagated. 

I present a new compact data structure, called Multi-Level Counting Bloom Filter 

(MLCBF), and specifically show how this data representation by randomization can be 

used to improve the performance of stateful replication. Analysis and extensive 

experiments are employed to explore the properties of my algorithms and evaluate 

replication efficiency by several metrics, including accuracy, maximum achievable 

load, search costs, resource consumption, and operational latency. The results show 

that my methods reduce the requirements of stateful replication on network and 

memory significantly, and also provide it with small and constant latency time. 

Next, I propose an adaptive method to prevent system from being overloaded by the 

replication of TCP flows, which is the majority of the Internet traffic. The intuition is 

to prioritize the pass-through processing over replication at system overload to 

maintain optimal throughput dynamically. This self-tunable method measures 

system utilization and flow lifetime distribution to adjust its decision adequately. 
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Testbed evaluation demonstrates its feasibility and effectiveness in real situation. 

 

 

  

 

Fig. 1. A practical example of SPEs employing replication in an HAC of active/backup scheme. Primary 

and backup SPEs of TCP tracking, traffic classification, and URL categorization, are located on two 

pass-through links. Two edge switches distribute traffic according to HA scheme. For the general data

flow inside SPE, the numbers in cycles and squares represent the steps of pass-through and 

replication processing. Notice the pass-through throughput of HAC is limited to the minimum of the 
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1.1. Background and Related Works 

1.1.1 High-Availability Clusters and Operation Modes 

Availability Clusters (HACs) are widely deployed on the highly-valuable links (e.g., the 

highest bandwidth links) of enterprises, campuses, and ISP networks. Generally, an 

HAC consists of pairs of stateful stream processing engines (SPEs) for functionalities 

such as TCP tracking and URL categorization. The goals of HACs are to automatically 

counter planned outages (e.g., a system upgrade) and unplanned outages (e.g., a 

hardware failure), avoid a possible bottleneck to optimize throughput, and, most 

importantly, remove single point of failure. 

For redundancy, if an SPE on the pass-through link in operation is out of service, 

pass-through traffic (e.g., TCP flows) is passed to the backup link (i.e., a failover) 

immediately. SPEs of identical functionality in an HAC must maintain key-and-state 

consistency among them to ensure consistent service in case of a failure.  

Figure 1 illustrates four statuses of a generic HAC which contains two sequences of 

SPEs which are connected by two pass-through links. The SPEs process pass-through 

traffic and replicate key-and-state information simultaneously to their backups 

through replication links. 

Two distinct HA schemes are generally available, i.e., active-backup (AB) scheme and 

active-active (AA) scheme. Figure 2a illustrates, in AB scheme, the load-balancing 

switches on the boundary of HAC direct all traffic to the primary link normally. As 

shown in Fig. 2b, if a failure on the network link is detected, the switches then 

redirect the traffic to the backup pass-through link. Notably, in Figs. 2a and 2b, the 

SPEs of TCP state tracking and URL categorization perform stateful replication 

according to the input stream in real time. 
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Figure 2c demonstrates that, in active/active (AA) scheme, the edge switches of HAC 

distribute traffic loads evenly across the pass-through links as well as ensure that a 

connection is sent to the same link bi-directionally. In both HA schemes, SPEs rely on 

 

Fig. 2. Four statuses of stateful HACs consisting of dual-string pass-through links: (a) normal state of 

active/backup scheme, (a) failover of active/backup scheme, (c) normal state of active/active scheme, 

and (d) failover of active/active scheme. Notably, the blue and green dotted lines represent replication 

traffic. The red solid lines indicate the pass-through traffic from and to the Internet. 
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replication for reliable service in face of failure and flow migration by edge switches 

due to load balancing. Finally, the network failure on the pass-through link in Figs. 2b 

and 2d is recovered as soon as possible by network operators in practice. Then, the 

traffic loads of HAC are processed by following those shown in Figs. 2a and 2c again 

after the recovery. 

1.1.2 Reliable Transport Solutions 

In [2], the issue of fault-tolerant SPEs by active replication is discussed. In contrast, 

we focus on the operational performance of an HAC by passive state replication. 

State machine replication is a popular technique to support reliable services. 

OpenBSD uses the pfsync to replicate state information of the IP Filter. The ct_sync 

integrates tightly with the netfilter to give a Linux solution. Both the pfsync and 

ct_sync rely on the propagation of at least three precise messages for a flow via 

multicasting. To support fault-tolerant transport protocols, many solutions have 

been proposed such as fault-tolerant TCP [11],[12],[13],[14],[15],[16] OS mechanism 

[17],[18], and new protocols [19],[20]. However, achieving reliable service remains a 

challenge because end-to-end reliability is limited to the weakest communication 

segment. Our work complements these studies by focusing on the HA techniques. 

1.1.3 Variants and Applications of Legacy Bloom Filters 

By using a bit vector V of length m and k independent hash functions with range 

[1,m], a standard Bloom filter (SBF) [21],[8] yields an extremely compact and 

one-way data structure that supports the membership queries to a set A = {a1, a2, 

a3,…, an} of n elements in constant time. The Bloom filter causes the space 

requirement to fall significantly below the information theoretic lower bounds for 

error-free data structures and can reduce the space by at least one order of 

magnitude. It achieves this efficiency at the cost of a small false positive rate, but has 

no false negatives. The term false positive describes the item not in the set is 

classified as being in the set in a query. The term false negative describes the item in 

the set is classified as not being in the set in a query. There is a tradeoff between the 
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size m, the number k, and the possibility of false positive f as the following Equation 

1 and it will give a minimum value when nmk /2ln ×= . Fig. 3 depicts the theoretical 

error rate with 4 or 8 hash functions and maximum active connections respectively 

versus different bit-vector sizes. For example, for n = 1M and k = 4, if we choose m = 

1M×10 = 10M (bits), then the f will be equal to 1.2%. 

km

kn

ef )1(
−

−≈  

The SBF and its variants are widely used in practice when the storage is at a premium 

(e.g., the memory space is too valuable to store the large volume of data) or an 

occasional false positive is tolerable (e.g., [7]). 

DLCBF [22],[23],[24] is a simple and practical alternative to CBF. Compared to CBF, 

DLCBF saves a factor of two at least on memory for the same PFPPFP . For state and 

membership replication, motivated by Multi-level Hash Table [25],[26],[27],[28], we 

introduce skewness to DLCBF to improve the run-time costs, PFPPFP , and space 

utilization, and retain its benefits of simple construction, small filter size, and, most 

importantly, single message per update. To the best of our knowledge, our work is 

the first attempt of using MFFs to minimize the resource requirements of stateful 

replication. Other examples of using imprecise representation in replication are 

distributed metadata management [29] and resource routing on P2P networks 

[30],[8]. Finally, many variants of Bloom filters [21] have been presented, including 

filter compression (e.g., [31],[32],[33]). By contrast, symbol replacement provides 

another possibility by converting incremental messages in real-time, instead of 

compressing the filter itself. 
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Fig. 3. False positive rates in log scale vs. bit-vector sizes under different maximum concurrent 

connections that a primary holds. 
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1.2 Motivation and Design Goals 

In my preliminary tests, the performance of TCP state replication (6 states for each 

flow) is measured to understand the bottlenecks of stateful replication. The 

observations from the results can be viewed as the motivations of this work.  

First, Fig. 1 shows the architecture of SPE of two existing precise replication solutions: 

OpenBSD pfsync and Linux ct_sync. In receiver, both replication and pass-through 

loads share the same state table. This makes free entries and semaphore locks of 

state table become another type of resources. The long-lasting flows replicated from 

a sender may occupy considerable entries which are only of use when necessary (e.g., 

a failover and flow migration). In addition, high-rate short flows aggravate resource 

contention of receiver, thereby interfering with performance. 

Second, an intuitive example is used to explain the cost of precise replication: 

assume that steady flow rate is 20k connections per sec (cps), a precise replication 

message contains <four-tuple,state> whose size is 100 bits, and update interval is 30 

sec. Then, a single update introduces 20k(cps)x6(states)x30(sec)=3,600k messages 

and 360Mb of memory/network costs. Obviously, precise replication incurs 

considerable costs into SPEs and replication links under high-rate traffic. The 

utilization law tells us that the reduction on resource requirements (e.g., latency per 

insertion or bandwidth consumption per update) increases the maximum number of 

task completions per time unit; namely, the capacity of SPE and scalability of HAC.  

Third, Counting Bloom Filter (CBF) [7],[8] and variants are widely used by 

membership replication of network applications (e.g., [7],[8],[9],[10],[29],[30]). 

However, the bandwidth cost by CBF for state replication is higher than precise 

replication for some applications like traffic classification. Finally, CPU load is 

dominated by the number of incoming pass-through packets and replication tasks. 
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When system is overloaded, pass-through processing must get more resources. 

Replication should be de-prioritized for optimal pass-through throughput. 

Motivated by above observations, my design goals are: 1) an architectural separation 

of pass-through and replication processing, 2) an efficient hashing structure for 

stateful replication at very low runtime costs. The structure has to be as simple to 

implement and maintain as possible for high-speed SPEs, and, 3) finally, a scheme to 

prioritize pass-through tasks over replication ones for optimal pass-through 

throughput at system overload. 
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2. Stateful Replication in HA Clusters Using 

Hashing Structures 

2.1 Membership Replication by CBFs in Firewalls 

In contrast to existing membership replication solutions in HACs, Flow Digest (FD) 

[9],[10] improves the replication procedures by two factors: (1) the new primary only 

references the state table when it takes over the traffic processing and (2) a new data 

structure is designated to save bandwidth requirement. The FD scheme can be 

divided into three phases: summary, update and recovery. They are described briefly 

as follows. 

In the summary phase, the primary collects all active entries in state table into an FD 

structure which is constructed based on the Bloom filter which will be described later. 

During the update phase, a message is sent to the slaves by multicasting and a slave 

only saves the received data without any operation on its state table. The scheme 

shifts to the recovery phase after a failover, and the new primary reconstructs the 

state table in a packet-driven fashion by querying the stored FD structure (i.e., a 

backup SBF) to see whether an incoming TCP packet might be active classified by the 

old primary. If it seems true, the packet passes the recovery process. Otherwise, the 

new primary drops the packet. 

The SBF and its variants are widely used in practice when the storage is at a 

premium (e.g., the memory space is too valuable to store the large volume of data) 

or an occasional false positive is tolerable (e.g., [7]). 

2.1.1 Bloom Filters as FD Representation 

To improve the bandwidth utilization, instead of notifying the slave about every 
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change to every state entry, the main idea of FD is to provide a snapshot of the 

primary state table and therefore it requires much less frequent propagations of 

state changes. As shown in Fig. 4, the proposed method keeps a data structure which 

contains two filters in the memory of a primary, including a counting Bloom filter 

(CBF) [7],[8] and an SBF. For example, to check a flowID against CBF and SBF 

summary, a flowID is hashed with k hash functions (In Fig. 4, k = 4) and, after 

applying the modulus to resulting values by size m, the bits corresponding to the 

results in filters are checked. In practice, an FD structure is implemented by an m-bit 

array where each bit is associated with a counter (whose size is b bits). The 

operations to maintain an FD data during the summary phase include: 

• Insertion for a new flowID. When the primary changes its state entry of a 

connection as established, it then inserts the connection to the CBF by hashing 

the flowID and incrementing all resulting counters by 1. When a counter 

overflow occurs, this counter stays at its maximum value. With the identical 

hash functions and size m, an SBF, a bit-wise array, is used to provide the 

 

Fig. 4. An FD example to summarize the existing active connections. Two Bloom filters are used in an 

FD structure and the primary only sends the SBF to slaves. 
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abbreviated information of the CBF and the corresponding bit is set from 0 to 1 

when the associated counter is increased from 0 to 1. 

• Deletion for a flowID. When a state entry is removed from the state table due 

to a timeout of inactivity or a connection termination, the counters of CBF 

touched by hashing results of the flowID are decremented by 1. When a 

counter deletion causes a value in the CBF to change from 1 to 0, the 

corresponding bit in the SBF is reset to 0. 

In the update phase, two message formats are used according to update sizes. In a 

high connection-rate environment, the primary sends the SBF to slaves directly to 

achieve lower update overhead. One can thus view an update as the snapshot of a 

state table propagating outward from the primary. As described before, except for 

shifting to the recovery phase, the state table in a slave will not be accessed, clearly 

quite different from current SRPs, and this prevents the slave from merging every 

incoming message its local state table in real-time. Every update by sending entire 

SBF is self-contained, so that the slave just replaces the stored data with a received 

SBF directly. 

Sending an SBF (e.g., 4,096K bits) to slaves is clearly not economical at all in a slow 

traffic environment (say, below 1,000 cps), because the update information 

contained in an SBF may be only slight different from the one before it. This makes 

the incurred overhead exceed the benefits of the proposed method. An alternative is 

to use a difference mechanism which forms an update message (called difference 

message) issuing changes. A difference message is composed of a list of 32-bit 

entries and every entry uses the most significant bit for specifying whether the bit 

should be set to 0 or 1 and the rest bits for specifying the SBF index to be modified. 

The choice of which message format to use will depend on what the size of an 
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update will be. Obviously, if the difference between two updates is small, it is more 

saving to use difference messages rather than entire SBF. 

After a failover, a new primary comes up and enters to the recovery phase. It bases 

on the backup SBF from the old primary to process the incoming traffic and 

reconstruct its state table in a packet-driven fashion. A SYN packet will not be filtered 

by the backup SBF. When there is a non-SYN TCP packet arriving and it can not be 

found in a state table lookup, the new primary performs a membership testing on 

the backup SBF and the bits corresponding to the result are checked. If all bits are 

positive, then the new primary accepts this connection into the state table. The 

duration of a recovery process is equal to the default timeout of a state entry (say, 60 

to 120 seconds). 

Two possible errors in FD are defined:  

• False hit: A connection is not active for the old primary, but the backup SBF 

answers a positive for the query. 

• False miss: A connection is active for the old primary, but the backup SBF 

indicates it is not.  

Two possibilities for cause of a false miss: the false negative from the backup SBF and 

the state inconsistency between the primary and slave. The problem of state 

inconsistency will be discussed later. In FD, using a counting Bloom filter as the 

representation of active connections incurs small false positive and false negative 

rates. The false miss affects the performance of pass-through TCP traffic, because the 

packets of a misclassified connection will be dropped continuously in general, 

including all re-transmissions. In order to reduce the probability of yielding an 

overflow event (the cause of a false negative), the counters in our array need to be 
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large enough to avoid the counter overflows. On the other hand, the counter size 

needs to be made as small as possible to save main memory. According to the 

analysis of [7],[8], it reveals that 4 bits per counter should be sufficient for most 

applications, so do the counters of a CBF. 

Occasionally, a Bloom filter may return false positives. Note that the false hits do not 

affect the recovery of active connections. But, this means that a packet without the 

previous 3-way handshake procedure passes through the filtering of new primary 

because the SBF returns a positive answer in the recovery phase. A network attack 

may use this as ACK floods to exhaust the system and network resources of victims. 

The packet rate of attack was reported as high as 200,000 pkts/s [34],[35]. In the 

following, we briefly discuss how to minimize the syndrome of false positives. 

First, since the packet reaches the particular endpoint through a false positive, 

depending on the implementation of OS, the endpoint either replies back a TCP RST 

packet or an ICMP unreachable packet to sender and this rogue ACK packet will be 

discovered eventually when the new primary receives this network error packet. 

Second, a DDoS prevention module is popularly equipped in a modern firewall or IPS. 

When the ACK flood is detected, for optimizing the utilization of state table, the new 

primary can enable the aggressive aging [36]. Third, it is noteworthy that false 

positives only exist after failing over and the duration of this potential risk is short. 

Finally, the failover timing and the parameters of an FD implementation should not 

be predictable and open to network attackers. Therefore, we believe that it is difficult 

for attackers to use the feature of Bloom filter to bypass the security filtering, 

especially when the system uses DDoS detection as a front-end to prevent the state 

table explosion [37]. 

A third kind of error introduced into HA comes from the overhead of failover process, 
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including the failure detection and primary election. Instead of an efficient state 

replication, a fast network-level failover mechanism is required to minimize failover 

overhead. 

The number of hash functions influences two competing forces: the probability of 

collision and the capability of the discrimination between flowIDs. Besides, in FD, a 

larger number of hashes may increase update size in a difference update. We 

compare three hash functions. First, MD5 is an open and well established message 

digest algorithm and is chosen for its well distributed and fix-sized output values. 

Four hash values are built by calculating the MD5 checksum [38] of a flowID, which 

yields a 128-bit data, then dividing it into four 32-bit words. The indexes into the SBF 

and CBF come from applying the modulus to resulting 4-byte values by size m finally. 

Second, a modification of MD5 in [39] (called MD- by ignoring the G, H, and I 

functions) is used to improve the throughput and has a close result with MD5. Third, 

we use a “fast” hash family based on the shifting, AND, and XOR operations on 

flowIDs. Although this solution is less effective than MD5 and MD- in avoiding 

collisions, it is characterized by much lower computational overheads and can be 

implemented by a limited and simple instruction set (e.g., RISC-based network 

processor units). 

2.1.2 Update Criteria 

In order for the recovery phase to maximize the reconstruction performance, the 

backup FD at each slave must be kept most up-to-date with the primary state table of 

the primary. Ideally, the primary should continue to propagate the last information 

on itself. However, this increases the update overhead, because frequent 

propagations of update messages incur a non-trivial cost on system performance and 

should be avoided. The key to the scalability of an HA cluster is to ease the load on 
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the system and network. Thus, a backup SBF without updated in real-time helps the 

scalability; rather, the update can be triggered upon simply a periodic basis, or a 

threshold basis. These two methods are transparent in operation. The update can 

occur upon a regular time interval, or when a certain percentage of the variation on 

existing connections compared to the previous update is not reflected to a slave. 

That is, FD uses an occasional message burst for providing a table snapshot to 

replace the continuous small messages for updating state changes. 

Because a failover is likely to be prior to an update event and results in a state 

inconsistency, a periodic or threshold-based update method poses a potential risk to 

a new primary of dropping the packets of active connections in the recovery phase. 

Two approaches are used in the recovery phase to solve the problem: TCP cold start 

[40] and the intentional block mechanism. 

TCP cold start lies on the assumption that the new primary lies between a trusted 

network (e.g., internal network) and an untrusted network (e.g., external network). If 

a non-SYN packet which fails on lookups both in the state table and the backup SBF 

comes from the trusted network, it will pass the recovery filtering and the state entry 

will be instantiated into the state table. However, if the packet is from the untrusted 

network, the new primary forwards the packet to the destination by stripping off its 

payload and decreasing the sequence number in the header. In this way, if the packet 

is indeed from a reliable connection, then the endpoint in the trusted network will 

respond this “keep-alive” packet with an ACK. Then, because the ACK comes from 

the trusted network, the new primary instantiates the corresponding state entry and 

continues as usual.  

Using the intentional block mechanism, for the same packet above, the new primary 

inserts the corresponding flowID into the backup SBF regardless of packet direction 
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and simply drops the packet. Again, if the connection is active, the source endpoint 

will initiate a retransmission. This time, the new primary will get a positive answer 

from the backup SBF for the retransmitted packet and forward the packet to its 

destination.  

In summary, by taking advantage of the state held at the receiver and the sender, in 

the recovery phase the new primary can continue the active connections which are 

lost in state replication. While supporting these methods introduce additional 

bandwidth consumption on the pass-through path, the duration of recovery phase is 

short and, more importantly, these schemes relieve the load in propagating the 

update messages immediately for state consistency and allow a larger update 

interval or threshold to reduce the network overhead. 

2.1.3 FD Components and Trade-offs 

Besides the update strategies, the FD choices vary in many dimensions and are 

intertwined when determining the amount of resource requirements. In this section, 

the choices on m and hash functions and their effects are discussed. 

 

 

Fig. 5. Example: the collision distributions of fast hashing, MD5, and MD- (α =40). 
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A. Selecting Table Size 

A number of factors impact the choice of the size m. First, in general the memory 

needs of FD are determined by nc at the link. Namely, m should vary with the cluster 

maximum capacity of a real network, including pass-through and possible migrated 

loads. Second, despite a higher bandwidth cost, a larger m is preferred due to a 

smaller theoretical error rate as shown in Fig. 6 and a 3% F might be acceptable for 

an application of Bloom filter. However, F varies over time and links in practice, 

depending on na. For example, the traffic with high connection rate but low 

concurrent flows is common for a link before a web server. On the other hand, 

backbone links usually remain at loads of 35–85% and contribute both high rate and 

high flow number. If na < nc, the partial fulfilled SBF will perform better than an 

expected F.  Hence, we define the Table Load (L) as na/nc to describe a temporary 

density of active flows in the FD structure. 

Besides the false ratio, L also affects the amount of incremental updates. As 

mentioned before, a SBF-bit alternation is identical to an incremental event. This 

indicates that FD with a low na or a big m generates more events for a given 

connection rate. Next, we analyze the theoretical probability of an incremental event. 

As a dominating metric, the number of events can be used to approximate 

bandwidth cost. We consider the occurrence of events that modifies the entry value 

of SBF from 0 to 1 (or 1 to 0). The analysis is based on a uniform hashing distribution 

over the key space at random.  

As observed on the SBF in [7], assume that k hash functions are applied to each key. 

After inserting n keys into a table of size m, the probability that a particular bit still 

remains 0 is: 

kn

m








−

1
1  

For the case of CBF, the value of a particular entry has a range of 0 to 2
b
–1 (b bits for 

each entry). The probability of an entry value from 0 to 1, and 1 to 0, is represented 

as P01 and P10, respectively. For a particular entry in table of size m, after n key 

insertions, P01 = Pr (value in the entry is ‘0’I hashed by next insertion) = Pr (hashed 

by next insertion) × Pr (value in the entry is ‘0’) 
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While P10 = Pr (hashed by next deletionI value in the entry is ‘1’) = P (hashed by next 

deletion | value in the entry is ‘1’)×P (value in the entry is ‘1’) 
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This equation for P10 equals to: 

kn

mm

k
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−

1
1

1
                          (3) 

By above two Eqs. (2) and (3), the amount of incremental messages under different 

Table Loads, Ls, and connection rates could be estimated. 

B. Selecting Hash Functions 

The computation throughput of hash functions are studied by many works (e.g., [39], 

[41], [42], [43],[44]) and FD shares similar criteria that hashing should provide an 

even distribution and a straightforward computation for high speed links. In FD, we 

study the performance of MD5, MD- [39], and fast hashing on x86 platforms. 

Although MD5 produces collision-resistant and fix-sized hash codes, the 

computations are difficult to optimize [41]. On the other hand, MD-, a modification 

of MD5 by ignoring the G, H, and I functions, has a close distribution quality with 

MD5 and better throughput. Furthermore, performance can be improved if prime 

number calculations are avoided [45]. We then tried simple but “fast” hash functions 

to compute 32-bit hash values for a flowID by different combinations of shifting, XOR, 

and an AND operation with a prime number. This hashing is characterized by a much 

lower computation overhead and can be implemented by a limited and simple 

instruction set (e.g., RISC-based network processor units). Our preliminary 

experiments show that the throughput of fast hashing and MD- achieve about 5.87 

times and 2.45 times higher than that of MD5. 
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However, the uniformity of hash distribution is an important consideration for FD to 

estimate the size of incremental updates by Eqs. (2) and (3). Given a CBF, the hash 

load factorα is defined as na× k/m. That is, the expected collision number falling into 

each bin. Fig. 5 shows that fast hashing is much less effective than MD5 and MD- in 

hash uniformity. On the other hand, a uniform distribution also avoids unexpected 

false hits in the recovery phase. Therefore, we use MD- to strike a proper balance 

between hashing uniformity and computation speed and thus k is equal to 4. Finally, 

to reduce the hash calculations, the 128-bit digest computed by the insertion is 

stored into the state entry and is re-used when deleting the flow. 

2.1.4 Preliminary Evaluations of FD Scheme 

This section presents the results of simulation (written in C++) to evaluate network 

costs of FD and SRPs from low to high connection rates. We consider a stateful 

cluster composed of a primary and a slave and this HA cluster processes the 

pass-through traffic from internal and external networks. The node-to-node link is 

100Mbps which is chosen to model Fast Ethernet and all updates are delivered by 

unicast. In this topology, the range of steady connection setup and teardown rates 

and active connection duration are 500 to 90,000 cps and 5 to 30 seconds, 

respectively. The setup delay (the time elapsed between the first SYN to the first ACK) 

is set as 2 seconds [37]. We study 256K, 512K, and 1M active connections and total 

simulation time is 3,600 seconds. 
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We experienced with three FD configurations: 1Mb, 2Mb, and 4Mb SBF sizes for 

supporting 256K, 512K, and 1M connections respectively. A CBF counter takes up 4 

bits. FD has 4 hash functions by calculating 128-bit MD5 outputs from an open 

source library. Based on the connection rate and active connection number, one can 

convert the thresholds to time intervals, hence, for FD, we only use a periodic 

update method and the update interval is from 1 to 30 seconds. Two update 

message formats of FD are both compared with current SRPs in the simulation. 

 

Fig. 6. The average bandwidth consumptions under different connection rates of SRP and FD (m=4Mb, 

m/n=4). The update interval is 5 seconds. Note that the update of FD is by sending entire SBF. 

 

Fig. 7. The average bandwidth consumptions in log scale under different connection rates of SRP and 

FD by different update intervals. Note that the update of FD is done by sending entire SBF and the 

y-axis is in log scale. 
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Following the ct_sync and pfsync, the simulator for current SRPs sends messages for 

state insertions, changes, and deletions, and message size is 13 bytes which contains 

one flowID and a flag to specify update type. We do not consider the overflow of a 

delayed output queue and all messages of current SRPs are sent to the slave in 

real-time. 

We first show the estimated update cost caused for different connection rates in Figs. 

6 and 7 which indicate the bandwidth consumptions of current SRPs and FD by 

sending entire SBF. Figure 6 shows that the FD structure to support 1,000,000 

connections with 5-second update interval eliminates 46%, 73%, 86%, and 97% of 

bandwidth consumption compared to current SRPs at 5,000, 10,000, 20,000 and 

90,000 cps, respectively. In Fig. 7, we observe that FD by sending entire SBF provides 

a snapshot of the current state table at a moment and the message size is 

deterministic for every update regardless of different connection rates. By contrast, 

the total number of update messages under a connection rate does not change, thus 

current SRPs have fixed costs on network depending on the connection rate of 

regular traffic. Therefore, FD requires a less bandwidth as the update frequency 

decreases. For example, if the update interval is set to 30 seconds, FD reduces the 

bandwidth consumption by 91% to 99% for 1M connections. Thus, the network 

overheads of the proposed scheme can be reduced significantly with a larger update 

interval. In addition, the network overhead can be improved due to a smaller 

maximum connection number n with the same m/n. For example, in Fig. 6, it shows 

that FD reduces at least 86% of the bandwidth consumption with 5-second update 

interval both for supporting 256K and 512K connections. Second, we also simulate 

FD with difference update with low connection rates (not shown in the figure). When 

the primary works in a slow traffic environment or with a small update interval, e.g., 
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2 seconds, a difference mechanism is used because the update size is less than m 

bits. Compared to current SRPs, the simulation results demonstrate that FD with 

difference messages eliminates 20% of the network bandwidth and reduces the 

number of update messages by 34% to 37% from 500 cps to 5,000 cps. The above 

results explore that the major benefit of the proposed scheme is to improve the 

bandwidth utilization, especially at high connection rates. 

We study the throughputs of MD5, MD- and fast hash functions by getting 324M sets 

of hash outputs (k = 4) without other operations. Our results show that the 

throughput of fast filter and MD- filter achieve about 5.87 times and 2.45 times 

higher throughput than MD5 filter. Our simulation tests also demonstrate that the 

hash function dominates the performance of the proposed scheme. 

2.1.5 Discussions 

There is essentially no limit to how many nodes can participate in a cluster and the 

network and memory overheads introduced by maintaining state consistency 

determine the scalability of a replication protocol. The bandwidth needed by current 

SRPs scale linearly with the amount of regular traffic passing through the HA cluster 

and the number of update messages may grow up to many thousands per second 

(e.g., at 20,000 cps). By contrast, the number of bytes needed by an update is at 

most a constant value (m bits) and the number of update messages can be 

determined by update interval and is smaller than current SRPs. As our simulation 

results show, the proposed method requires relatively much less network bandwidth 

by sending entire SBF and less update messages by sending difference messages and 

therefore is more scalable for state replication than existing methods both for low 

and high traffic loads. 

Notice the parameters for FD: the number of hash functions k and type (e.g., MD5 or 
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fast hash), a bit vector of length m, b additional bits for each CBF cell, update 

approach, and n simultaneous maximum connections. These parameters are 

negotiated at HA initialization time or when a new node is trying to connect to a 

functioning cluster. Recall that the feature of Bloom filters is that they provide a 

tradeoff between the storage requirement and accuracy. Thus, if one wants to run 

with less bandwidth consumptions for state consistency, this can be achieved by 

reducing the size m with possibly slightly increasing of entries into the state table 

because of more false positives in the recovery phase. The other approach to reduce 

network overhead is to choose an appropriate larger update interval according to the 

traffic conditions. Furthermore, by the above settings, FD occupies a total space of 

(m + mb + m) bits at most in memory of a primary, i.e., an FD data structure and 

difference messages of size m at most, m bits at most to the network for individual 

update by sending an SBF or a bulk of difference messages, and m bits in a slave to 

store a backup SBF. 

2.1.6 Section Summary 

For a stateful HA scenario, the current solutions use update messages for state 

replication which may use a substantial amount of network bandwidth and this extra 

overhead could also reduce the capacity of a cluster to process the regular 

pass-through traffic. Moreover, the computation requirements associated to 

maintain the state consistency between the cluster nodes result mainly from the 

processing of update messages and merging the state changes into the local state 

table. Flow Digest (FD) has been proposed to improve existing state replication 

protocols by reducing the update overhead for both low and high connection rates. 

The main advantage of the proposed method is to reduce the network overheads of 

state replication. The simulation results show that the bandwidth consumption of the 
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flow digest is much less than that of current implementations. The proposed scheme 

by difference messages eliminates 34% to 37% of the network bandwidth and 

reduces the number of update messages to the slave by 20%. More importantly, at 

high connection rates, the bandwidth consumption can be reduced typically by at 

least 86% compared to current solutions. 
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2.2 Evaluations of TCP Membership Replication in 

Firewalls by Real Packet Trace Files 

A stateless HA cluster can be simply achieved by using the stateless mechanisms for 

network redundancy (e.g., VRRP [46]) and identical configuration/ruleset. However, 

without state replication, all legitimate connections (a.k.a. flows), or even worse 

whole user requests, have to be re-established after a failover due to the loss of flow 

states in the firewall cluster. On the other hand, in a stateful HA scenario for 

firewalling, a state replication protocol (SRP) (e.g., pfsync [47] for OpenBSD [48] IP 

Filter [49] and ct_sync [50],[51],[52],[53] for Linux netfilter [54]) provides replication 

management and supports reliable connections at cluster-level by switching the 

active connections to the secondary firewall node transparently in a failover. Namely, 

an SRP is complementary to stateless failure detection by maintaining state 

consistency between a firewall node and its backup. Note that both the pfsync and 

ct_sync protocols adopt the passive replication and rely on explicit messages to 

replicate three in-order state types (i.e., insertion, modification, and deletion) via 

multicasting. 

Many other solutions have been proposed to provide connection-level reliability such 

as fault tolerance in TCP, OS mechanism, and new transport protocols. However, 

although these schemes can be deployed, achieving reliable connectivity remains a 

challenge. For a user, there is no difference between the service outages due to the 

networks and due to the servers. Any near-source or near-destination single-point 

failure still hinders the service quality. When network failures are considered, service 

availability is often as low as 99%, meaning that a server is out of service for about 15 

min a day on average [55]. Furthermore, Boutremans, et al. [56] find that an 
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availability degradation of VoIP service results from the reliability problem of routing 

equipment. They identify the need for more reliable hardware architecture and fast 

protection mechanisms against link failures. 

Despite a stateful HA cluster complements flow-level protections by removing the 

single-point failure, an SRP also consume network and system resources to protect a 

connection. In this paper, we evaluate the costs of different state replication 

methods for TCP connections (the majority of Internet traffic) and explore the 

tradeoffs from varying a time-triggering parameter to replicate a connection. The 

packet traces (see Table I) collected from major Internet backbones and from campus 

are used to simulate the replication operations on a prototype implementation. 

2.2.1 State Replication Methods Used in Tests 

A. Eager and selective replication 

In a firewall device, a state entry is used to store the information derived by TCP 

stateful tracking from the bi-directional traffic of a TCP flow. As a flow is initialized 

and terminated, the corresponding entry is inserted to and removed from the flow 

table. Each entry contains two types of flow sub-states: immutable and mutable. An 

immutable sub-state flowID, i.e., four-tuple <DstIP, SrcIP, DstPort, SrcPort>, remains 

constant and is used to identify a connection. Mutable sub-states may be changed 

very frequently, such as the latest packet arrival time, sequence and 

acknowledgement numbers, window advertisement and total flow bytes. 

Two replication methods are first considered: eager replication and selective 

replication. Besides the immutable information, eager replication synchronizes every 

change on the mutable information of a flow from SYN to its completion. For 

example, many advanced firewalls keep track of the sequence and 

acknowledgement numbers and TCP flags continuously to ensure the active flows 
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are compliant with the TCP specification in all aspects. To meet these criteria after a 

failover, eager replication must be adopted by a stateful firewall cluster for 

synchronizing the mutable information. 

Though the message sizes of the pfsync and ct_sync both exceed 100 bytes, an 

explicit 32-byte-long representation is used to update the following data for 

investigating the costs of eager replication. 

� flowID 

� Sequence and acknowledgement numbers 

� Segment size, window scale, and TCP flag 

� Timestamp 

� Operation and direction flag 

Another method, selective replication, synchronizes three state changes (i.e., 

SYN_SENT, ESTABLISHED, and flow completion) only. Actually, both the pfsync and 

ct_sync use a strategy similar to selective replication to optimize state copying 

operations. In [6], a selective mechanism is used to save the processing time of the 

backup server. Furthermore, note that in our evaluation, a 16-byte-long message 

(only flowID and operation flags) is used by selective replication to evaluate the 

overheads. 

B. Flow Digest 

The scheme Flow Digest (FD) [9],[10] improves the procedures of state replication 

through two factors: 1) an architectural improvement prevents the flow table from 

the access by replication traffic before a failover, and 2) a compact data structure 

employing randomization (i.e., Bloom filters) is designed to reflect the active flows. 

For PN and AN, all established flows are collected into a terse set representation and 

synchronized to the backup node by sending a Bloom filter or incremental messages. 
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The scheme shifts to the recovery phase after a failover and the flow table is 

reconstructed in a packet-driven fashion by querying the backup Bloom filter. 

The memory requirement of FD can be kept small, while still achieving high accuracy. 

For example, for supporting 1,000,000 connections in maximum, using 10,000,000 

elements, four bits per element, and four hash functions yields a false positive rate 

of 1.2% and requires a 7,500-KB memory space; not a concern in today’s equipments. 

Though false positives are possible, FD never rejects active flows after a failover 

under accurate state replication. 

We use the incremental updates to evaluate the overheads of the FD scheme. By 

large-size Bloom filters, FD can be viewed as a 2-state replication method to 

synchronize established flows and their terminations, where the message size is 

32-bit. 

C. Host-to-host aggregation 

By ignoring the port number at the two endpoints, small replication operations at 

the host-level can protect the packets from different TCP flows between the same 

host pair. Two observations from Fig. 8 with IPLS-3 provide an initial indication of the 

 

Fig. 8. The maximum number of TCP flows opened at the same time between two endpoints vs the 

host-level lifetime distributions (with the IPLS-3 trace) 
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potential benefits of host-level aggregation. The distributions of IPLS-1 and AUCK-4 

are not shown because they are similar with the results of IPLS-3. 

First, Fig. 8 illustrates that parallel connections are observed for all lifetime 

distributions, especially parallel degrees less than 5 connections. One presumable 

reason is that parallel TCP connections are widely used by kinds of applications, like 

web transfers, multi-stream applications, and P2P. For example, web browsers open 

parallel connections at the same time to request various objects of a web page. In 

[57], the analysis of web traffic shows that nearly all web clients open 4 or fewer 

simultaneous TCP connections to transfer the inline contents. In Firefox 2.0 browser, 

the default setting for maximum parallel connections per server is increased to 8. 

The study also points out that as clients transfer more objects, the likelihood of using 

concurrent connections increases. On the other hand, the studies [58], [59] on the 

web workloads show that both the number of objects per web page and the number 

of distinct server delivering content per page are increasing over the years. 

Second, as the host-level lifetime decreases, especially less than 5 sec, we observe a 

clear increase of the number of maximum parallel connections. Our flow analysis 

shows that many endpoints establish high-degree parallel connections at almost the 

same time. This implies the overheads of port-level replication for short flows are 

much higher than that of long flows due to the short burst and parallelism. By 

aggregating replication operations per source-destination pair, an HA cluster can 

counteract these potential overheads. 

To evaluate the overheads of host-level aggregation, only the first establishment 

event and the last deletion event between the two endpoints are replicated to the 

backup node. The message format/size is identical to that of selective replication. 
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2.2.2 Flow lifetime vs State Replication Overheads 

Thus far, in order to guarantee consistency, state changes in the primary firewall 

node are forced to be synchronized precisely. However, this approach is expensive. 

Measurements of the Internet traffic have shown that most TCP flows are 

short-running [60] and that long flows (e.g., less than 20%) carry a high proportion 

(e.g., 85%) of the total traffic bytes [60], [61]. Furthermore, long HTTP sessions of 

purchases are more profitable for web sites [62] and should be protected for 

successful completion. For web traffic [58], 15% of the TCP connections are 

persistent. However, these persistent connections deliver approximately 40% of the 

transferred bytes for web objects. 

The lifetime and size distributions of the Internet traffic add another dimension to 

state replication. The above studies imply that the major costs come from short flows 

when doing replication, but focusing on long flows protects the majority of network 

traffic (in bytes) and profits. For instance, the efficiency of replicating a flow less than 

50 ms is extremely low, particularly when this service is not critical for users. Because 

of the increased memory accesses and network operations, the cluster performance 

is likely to be impacted negatively due to the heavy loads from an SRP. Clearly, there 

is a tradeoff between good pass-through performance in failure-free duration and 

minimal recovery overheads after a failover. 

A lazy threshold t
threshold

 is used as a time-triggering parameter which refers to how 

long a flow has persisted before a replication operation is performed for that flow. 

We explore the effects of varying this parameter on the costs of four replication 

methods mentioned above. A t
threshold

 = 0 represents the precise replication which 

indicates the flow replication is dependent on the state replication method only. 
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2.2.3 Evaluations 

A. Implementation and packet trace data 

The experiments were performed on a testbed consisting of two identical 3-port 

machines (Intel Pentium-4 2.0GHz and 512MB RAM) as the cluster nodes. Two nodes 

are connected with a 100Mbps LAN (the replication link). As the base-line 

implementation, both machines run Linux 2.4.20 with our kernel module and patch 

installed. A tasklet implements the stateful tracking subsystem, four replication 

schemes, and lazy threshold in the kernel space. The flow table is implemented by a 

hash table. The inactivity timeouts for the idle entries in SYN_SENT, ESTABLISHED, 

and FIN_WAIT states are 20, 60, and 20 sec, respectively. Two kernel threads are 

used to send and receive the packets via UDP multicasting on the replication link. 
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Fig. 9. (a) The traffic reduction and (b) the replication overheads (with the IPLS-1 trace). 

 

 

Fig. 10. (a) The traffic reduction and (b) the replication overheads (with the IPLS-3 trace). 
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We validate four replication methods by the trace-based simulation, which gives us 

the imitation of the activities of known backbone/campus networks and a practical 

picture of benefits and drawbacks of the given methods. The replication schemes are 

applied to the bi-directional 10-min traces of Abilene-I and Abilene-III (denoted as 

IPLS-1 and IPLS-3) which were collected from OC-48c and OC-192 links in 2002 and 

2004 [63]. Another bi-directional 24-hour packet trace files (denoted as AUCK-4) 

from NLANR [63] were captured at the University of Auckland in 2001. All inbound 

and outbound packets with the corresponding metadata are read from the trace files 

and then sent to the kernel space sequentially as the input packets. At the end of 

reading trace data, all active flows are forced to complete and then passed to flow 

analysis. 

To enable a fair comparison, we ignore purposely the replication for the flows 

whose SYN packets were not captured in the trace files, though this leads to an 

underestimation of the pass-through traffic (especially long flows) and replication 

costs. Furthermore, due to the fact that routes may be asymmetric at the backbone, 

there is a minor tuning in stateful tracking. 

For setting FD parameters, the maximum number of the allocated state entries in 

three traces is 159,394. Therefore, we set the maximum concurrent connections 

supported by a cluster node as 200K and set the Bloom filter size as 2,000K elements. 

The MD- is used as the hashing functions and the hash number is 4. 

B. Trace-based evaluation results 

To understand the effects of the imprecise replication, the reductions of the 

protected pass-through and replication traffic are studied by tuning the parameter 

t
threshold

 from 0 to 20,000 ms. Note that the active flows whose states are already 

replicated are referred to as the protected flows. On the other hand, the overhead of 
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a replication method is measured by its bandwidth costs and the protected traffic 

bytes (TCP payloads). Let Nreplication and Nprotection be the total bytes of transmitted 

replication messages and pass-through packets whose states already have been 

replicated, respectively. Then, the overhead is defined as (Nreplication)/(Nprotection). Figs. 

9 to 11 illustrate the evaluation results in AB scheme of an HAC. 

First, it is observed that eager and selective methods are vulnerable to one-way 

flows and malicious SYN packets. For example, in IPLS-1 and IPLS-3, 9.9% and 39.2% 

of the recycled state entries get stuck in SYN_SENT state. In the case of IPLS-3, the 

flow analysis shows that 87.1% of the recycled SYN_SENT entries are allocated by 

one-way flows (almost sending only 1 to 3 packets), and the remaining 11% are the 

two-packet flows (SYN and RST). In a cluster using eager/selective replication, a short 

one-way flow allocates two state entries (in PN/AN and its backup node), which are 

recycled and deleted immediately after an inactivity timeout (20 sec in our 

simulations). Thus, these one-way flows significantly aggravate the contention on 

the system resources of two cluster nodes and bandwidth consumptions on the 

replication link. By contrast, because FD and host-level aggregation only replicate the 

established flows (namely, from ESTABLISHED state), the number of the deletion 

events activated by the SYN_SENT timeouts are much less than those of eager and 

selective methods. The measurement of one-way and two-way flows has been the 

subject of research in [64]. 

In Figs. 9a to 11a, when t
threshold 

=50 ms, due to the savings of replicating one-way 

flows and malicious SYN packets, the reduction ratios of selective replication on the 

bandwidth costs are as high as 24.8%, 27.8%, and 16.7% in IPLS-1, IPLS-3, and 

AUCK-4. By contrast, the cost reduction ratios of FD and host-level aggregation are 

only 0.05%–6.3% by the same t
threshold

. On the other hand, because most TCP flows of 

the Internet traffic are short-lasting, they dominate the state replication costs. 
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Except for eager replication, a very clear rise on the replication traffic reductions is 

observed when t
threshold

 < 1 sec in three packet traces. 

About the reductions on the protected pass-through bytes, Figs. 9a to 11a show that 

only 0.09–1.6% of total pass-through bytes are not protected by t
threshold 

=50 ms, but 

up to 27.8% of the replication traffic are saved for selective replication. For FD in 

IPLS-3, reducing 50% (t
threshold

=320 ms), 74.4% (t
threshold

=500 ms), and 88.9% 

(t
threshold

=2,000 ms) of the replication traffic excludes only 1.9%, 3.4%, and 11.8% of 

 

 

Fig. 11. (a) The traffic reduction and (b) the replication overheads (with the AUCK-4 trace). 

 

Fig. 12. The maximum replicated entry number in the backup node (with the IPLS-3 trace) in the 

simulation of AB scheme. 
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the pass-through bytes. The host-level aggregation has a very similar behavior. 

Remember that the resource savings come from the reduced replication operations. 

The reductions on the replication costs and protected bytes mirror the cumulative 

flow lifetime and size distributions in packet traces. Obviously, the efficiency of 

replicating flows longer than 500 ms is much higher than the precise replication. A 

small t
threshold

 can be useful for alleviating peak system load, reducing bandwidth 

consumption, and protecting the majority of Internet traffic bytes. 

In Figs. 9b–11b, we show the overheads of four replication methods. The overheads 

of eager replication do not decrease significantly as t
threshold

 increases. This confirms 

the high costs of keeping all mutable information consistent between the cluster 

nodes. In Fig. 9b, when t
threshold 

=0 ms in IPLS-1, the overheads of selective method, 

FD, and host-level aggregation are only 7.9%, 2.4%, and 3.3% of the overhead of 

eager replication, respectively. 

Figs. 9b–11b show that the overheads of the FD scheme are much less than those of 

eager and selective replication. For example, in IPLS-3 at t
threshold

=500 ms, FD reduces 

99.5%, 79.8%, and 22.9% overheads when compared to eager, selective, and 

host-level aggregation methods. Furthermore, though host-level aggregation avoids 

the operations for parallel connections, except for t
threshold 

< 1 sec in AUCK-4, the 

overheads of host-level aggregation are slightly higher than FD. This is because the 

message size of the FD incremental update is 32 bits and the size of host-level 

aggregation is 16 bytes. 

Another important metric is the number of replicated entries in the backup node. 

Though this metric may be not critical to an active/backup cluster, the valuable state 

entries of an active/active cluster are allocated both by pass-through flows and 

replicated flows. Thus, we perform simulations in AB mode to investigate the effects 

of t
threshold

 on the maximum number of replicated entries in the backup node. Note 
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that, in FD no replicated entry is required in the flow table of the backup node. 

For eager and selective methods, Fig. 12 illustrates that varying t
threshold

 from 0 to 50 

ms reduces the maximum replicated entry number from 128,852 to 89,425 (a 30% 

decrease) due to the effects of one-way flows. A t
threshold

=2,000 ms reduces 45% of 

the maximum number of eager/selective replication (from 128,852 to 69,897), while 

host-level aggregation reduces it by 44.4 % (from 12,873 to 7,152) at the same 

t
threshold

. Fig. 12 also illustrates that parallel connections exist for all lifetimes and 

parallelism degree increases as the lifetime decreases. When t
threshold

=50 ms, the 

entry number of host-level aggregation is 12,818; only 14.3% of the requirements of 

eager/selective replication. 

2.2.4 Section Summary 

To improve service availability and reliability, the stateful HA firewall clusters are 

deployed to remove network single-point failures. In this paper, we perform the 

simulation tests by real backbone/campus packet traces to evaluate the costs of four 

state replication methods as the possible solutions for firewall clusters with a 

tunable time-triggering parameter. To the best of our knowledge, there have been 

no cost evaluation results of the flow-level state replication methods over HA 

clusters available. We believe that our results also give a practical view to other 

technologies using TCP state replication, like transparent TCP-connection migration. 

We find that the precise replication overheads for short flows are high, because 

most TCP flows are short-running and the short flows are likely to have high-degree 

parallel connections. Thus, a small time delay can yield significant reductions on the 

bandwidth costs and cluster resources. Typically, reducing 50% and 74.4% of 

bandwidth costs only excludes 1.9% and 3.4% of the protection on the pass-through 

traffic. Moreover, the overheads of the FD scheme are lowest in nearly all the tests 
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we ran. For the active/active clusters, an important metric, the maximum replicated 

entry number in the backup node, is investigated. The results show that both the 

host-level aggregation and a time trigger larger than 5 sec reduce effectively the 

number of replicated state entries. In summary, our investigation highlights the 

benefits of the imprecise state replication, including the scheme employing 

randomization, the host-level aggregation and the time-delay policy. 

Besides above results, we further suggest that an SRP should replicate a TCP flow 

from its ESTABLISHED state. This strategy avoids the high costs, such as a high 

entry-recycling rate and unnecessary bandwidth consumptions, from very short 

one-way flows and malicious SYN packets. 
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3. Multi-Level Counting Bloom Filter (MLCBF) 

Fig. 20 shows a basic structure of my SPE consisting of MLCBFs. With the same 

functionalities of Counting Bloom filter (CBF), Multi-Level Counting Bloom Filter 

(MLCBF) allows item deletions and provides membership and multiplicity queries on 

a set SS  over a universe UU  with small error probabilities. MLCBF handles the 

insertions and deletions of items with keys easily to change SS  dynamically and 

features construction simplicity. A query of x 2 Sx 2 S  on the filter would always get a 

positive answer and a membership query of y =2 Sy =2 S  could give a false positive. 

As a multi-level structure, the intuition behind MLCBF is to store the most of inserted 

items in the largest (i.e., first) level. Then, all operations of MLCBF can be finished 

probably in the 1
st

 level. To hold nn items of SS  in maximum, MLCBF is a hierarchy of 

DD  levels (LV1 ; : : : ; LVD ; D ¸ 2LV1 ; : : : ; LVD ; D ¸ 2 ) with a set of DD  independent and uniform hash 

functions ( h1 ; : : : ; hDh1 ; : : : ; hD ), wherein each level comprises different bucket numbers 

(BN1 ; : : : ; BNDBN1 ; : : : ; BND). hihi at least provides a (log2BN ilog2BN i)–bit long output. The level sizes are 

decreasing linearly by a fixed decreasing ratio R (R < 1R < 1). Let R0R0 as 1 + R1 + ¢ ¢ ¢+ RD¡11 + R1 + ¢ ¢ ¢+ RD¡1. 

LV1LV1 holds BN1 = bn=(H ¢ R0)cBN1 = bn=(H ¢ R0)c bucket elements (BEsBEs), and LViLVi holds BNi = bBNi¡1 ¢ RcBNi = bBNi¡1 ¢ Rc 

buckets for i ¸ 2i ¸ 2. 

Each BEBE  consists of H cells (H ¸ 1H ¸ 1) and a load bitmap (LBLB ) of II  bits to record the 

number and location of active cells, which record the information of inserted items. 

Each cell holds a cell counter (CCCC , CC-bit) and a fingerprint (FF -bit) from a hash 

function hfhf . If the corresponding LBLB  bit is not set, a cell is identified as empty or 

non-active, and the cell access for query and deletion can be avoided. Let the total 

bucket number as BN = n=HBN = n=H . This gives a total memory space bounded by 

n ¢ (F + C ) + BN ¢ In ¢ (F + C ) + BN ¢ I  bits. 

For MLCBF, I propose two insertion algorithms called MLCBF-First Available 
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(MLCBF-FA or FA) and MLCBF-Least Load (MLCBF-LL or LL). For two algorithms, to 

insert, query, or delete itemxx, there is DD possible buckets in MLCBF.  

For MLCBF-FA, as shown in Algorithm 1, if the item hf (x)hf (x) does not exist in MLCBF, 

FA simply places the item to an empty cell of BEiBEi indexed by hi(x) mod BNihi(x) mod BNi with 

the smallest ii. Namely, FA tries to insert a new item into lower levels. An item will 

only be inserted into LVi+1LVi+1 when the hashed bucket in LViLVi is full. The probing is 

stopped until an empty cell or an overflow in LVDLVD. When the empty cell is found, its 

CCCC  is simply incremented and the corresponding bit in LBLB  is set to one. 

For MLCBF-LL, if hf (x)hf (x) of a new item xx is not in MLCBF, xx is placed to an empty 

cell of the BEBE  whose LBLB  stores the smallest number of bits set to one amongst DD 

associated BEsBEs of xx. In case of a tie, I always place xx to LV1LV1
 like d-left scheme 

[24]. Thus, FA allows bucket overflows in LVi (1 · i < D)LVi (1 · i < D). In LL, any bucket overflow is 

an error condition. Notice, I check whether hf (x)hf (x) already exists in any BEBE  at first 

for an insertion to avoid the problem that the same hf (x)hf (x) to be found in several 

cells when trying to delete item xx. If so, I simply increase the corresponding CCCC  in 

insertion. 

Algorithm 1 Pseudo-code for FA insertion and search in MLCBF 
 

Function FA-INSERT(key) 

1:      if SEARCH (key) = 0SEARCH (key) = 0 then 

2:           for iÃ 1 to DiÃ 1 to D do 

3:                pos Ã LVi [hi(key) mod BNi ]pos Ã LVi [hi(key) mod BNi ] 

4:                for j Ã 1 to Hj Ã 1 to H  do 

5:       if BEpos :LB [j ] = 1BEpos :LB [j ] = 1 then 

6:                          BEpos [j ]:f ingerprint Ã hf (key)BEpos [j ]:f ingerprint Ã hf (key) 

7:                          BEpos [j ]:CC Ã BEpos [j ]:CC + 1BEpos [j ]:CC Ã BEpos [j ]:CC + 1 

8:            BEpos :LB [j] Ã 1BEpos :LB [j] Ã 1 

9:                          return 1 

Function SEARCH(key) 

10:     for i Ã 1 to Di Ã 1 to D  do 

11:           pos Ã LVi [hi(key) mod BNi ]pos Ã LVi [hi(key) mod BNi ] 

12:           if BEpos:LB 6= 0BEpos:LB 6= 0 then 

13:                for j Ã 1 to Hj Ã 1 to H  do 

14:                    if BEpos :LB [j] = 1BEpos :LB [j] = 1 then 

15:                          if BEpos [j]:f ingerprint 6= hf (key)BEpos [j]:f ingerprint 6= hf (key) then 

16:                                j Ã j + 1j Ã j + 1 

17:                          else return 1 

18:                     else j Ã j + 1j Ã j + 1 

19:      return 0 
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To answer a query of “y 2 S ?y 2 S ?”, one checks whether hf (y)hf (y) is found in DD associated 

BEsBEs by SEARCH (key)SEARCH (key). If not, y =2 Sy =2 S . Thus, total D ¢ HD ¢ H  probes are required in worst 

case and lookup complexity is O(1)O(1). In SEARCH (key)SEARCH (key), because a search naturally 

accesses the buckets in the same order as insertion and the wanted item could be 

located in LV1LV1 probably, it starts from LV1LV1 and continues till LVDLVD, if necessary. The 

lookups on levels are actually independent and can be optimized by parallel 

executions.  

In a deletion, when the inserted item is found through SEARCH (key)SEARCH (key), the CCCC  is just 

decremented and the LBLB  is clear if the CCCC  becomes 0. 

3.1 Properties of MLCBF-FA 

By employing d-left hashing [24], d-left CBF (DLCBF) [22],[23] uses DD equal-sized 

subtables and HH  cells in each bucket. Thus, both MLCBF and DLCBF can be extended 

in two ways for a number of given cells: one extends the number of hash functions, 

DD, and the other changes HH . We unify these by considering FA, LL, and DLCBF using 

a two-parameter pair (D;H)(D;H) to compare performance metrics and the tradeoffs. In 

the rest of paper, MLCBF-FA(D,H) indicates the setting (DD levels, HH cells per bucket) 

of an MLCBF by FA insertion scheme. For the sake of generality, we call FA, LL, and 

DLCBF as multi-level fingerprint-based filters (MFFs) to highlight their basic 

differences on the construction concept from the Bloom filter-based filters (e.g., 

legacy CBF). 

The storage utilization or load of an MFF is defined as the ratio between the number 

of items and the total cell number. The load distribution of LViLVi (called as LDiLDi) is 

defined as the ratio between the number of items in LViLVi and the total cell number. 

The load factor ®® of an MFF measures the expected number of items per bucket 

(i.e., active cells per bucket), and ®i®i is the load factor of LViLVi. Finally, if not specified 

explicitly, we set RR as 0.5 and FF  as 20 bits in our experiments. As described later, 

using (4,8) and FF=20-bit yield a PFPPFP  less than 3:051 ¢ 10¡53:051 ¢ 10¡5. We believe this is low 
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enough for many practical applications. 

A. Maximum Achievable Loads 

We have experimentally tried a variety of choices  (2 · D · 8; 2 · H · 8)(2 · D · 8; 2 · H · 8) for their 

maximum achievable load, LoadmaxLoadmax, and Fig. 13 shows the results
 
(the simulation 

setup is described in Sec. 5.1).  

First, except for DD=2, FA has higher LoadsmaxLoadsmax than LL and DLCBF by the same (D;H)(D;H), 

especially when DD=8. The LoadsmaxLoadsmax of LL and DLCBF are quite similar to each other. 

Second, Fig. 13 indicates an MFF needs n=Loadmaxn=Loadmax cells at least to store nn items in 

maximum. For example, to support 105105 items, FA, LL, and DLCBF by (4; 4)(4; 4) need at 

least 115,207, 119,189, and 117,994 cells, respectively. Thus, we set up the total cell 

number of an MFF that is slightly larger than n=Loadmaxn=Loadmax to prevent bucket overflows 

in test (e.g., for 115,207, we round it up to 115,300). Finally, FA(4; 8)(4; 8) is almost as 

space-efficient (LoadmaxLoadmax=93.65%) as FA(8; 4)(8; 4) (LoadmaxLoadmax=97.26%) but with four fewer 

hash functions. This may imply a smaller latency in a platform without hashing 

acceleration hardware. 

 

 

Fig. 13. Average maximum achievable loads of 10k-trail simulation with different (D;H)(D;H) settings. 

Total cell number is 10k. 
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B. Storage Utilization and Load Distribution 

We now present the analysis of MLCBF-FA. For MLCBF-LL and DLCBF, the 

experimental simulations are used to investigate their properties. For simplicity, we 

assume the probability of the fingerprint collisions is ignored and item deletion is not 

considered in the subsequent analysis. The first task is to compute the expected 

storage utilization, LDiLDi, and ®i®i of LViLVi of FA.  

If nn items are inserted into a hash table with separate chaining by a uniform hash 

function, as the number of elements nn goes to infinity and the average load is ¹¹, 

the fraction with load kk  is 1

k!
(e¡u¹k)1

k!
(e¡u¹k). Most of the analysis on hashing is based on the 

above probability distribution. In MLCBF, for a level with mm BEsBEs , then the 

corresponding expected number of items lying in all BEsBEs which have exactly the 

load of kk mapped into them is:  

 km

µ

n

k

¶

(m¡ 1)n¡k

mn
km

µ

n

k

¶

(m¡ 1)n¡k

mn
 

To calculate load distribution of FA, let noverflow
LVi

noverflow
LVi

 as the expected number of items left 

from LViLVi to be inserted to LVi+1LVi+1, nsuccess
LVi

nsuccess
LVi

 as the expected number of items inserted 

to LViLVi successfully. Then: 

noverflowLVi
= ninsertLVi+1

=
n

X

j=H+1

(j¡H)¢m¢

µ

n

j

¶

(m¡ 1)n¡j

mn
noverflowLVi

= ninsertLVi+1
=

n
X

j=H+1

(j¡H)¢m¢

µ

n

j

¶

(m¡ 1)n¡j

mn
            

(3) 

If we apply Eq. (3) recursively starting from  LV1LV1  with ninsert
LV1

ninsert
LV1

= nn  and 

nsuccess
LVi

= ninsert
LVi

¡ noverflow
LVi

; i = 1; 2; :::;Dnsuccess
LVi

= ninsert
LVi

¡ noverflow
LVi

; i = 1; 2; :::;D, we can estimate ®i®i  as nsuccess
LVi

=BNinsuccess
LVi

=BNi , storage 

utilization of LViLVi as nsuccess
LVi

=(BNi ¢H)nsuccess
LVi

=(BNi ¢H), and LDiLDi as nsuccess
LVi

=nnsuccess
LVi

=n. For example, by Eq. (3), 

to insert 15k items into an FA(4,8) containing 20k cells, nsuccess
LVi

nsuccess
LVi

 of LV1LV1 to LVDLVD are 

10,336, 4,237, 427, and 0; very close to the 10k-trial simulation result: 10,328, 4,237, 

432, and 0 in average. Furthermore, by a total cell number nn, the noverflow
LVD

=nnoverflow
LVD

=n of an 

FA(D,H) can be computed. Then, Loadmax
FA(D;H)Loadmax
FA(D;H) can be estimated by increasing the load 

till noverflow
LVD

noverflow
LVD

 > 0. For instance, the estimated LoadsmaxLoadsmax of (4; 8)(4; 8) and (8; 4)(8; 4) are 94% 

and 97%; only 1.7% at most higher than the results of FA in Fig. 13. 
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Table I lists the ®i®i and LDiLDiobtained from the analysis and simulation. It outlines the 

advantage of MLCBF; the majority of items are located in LV1LV1 (and LV2LV2). The 

skewness of LD1LD1 of FA is higher than LL due to insertion strategy. Interestingly, the 

values of ®i®i and 
P

®i

P

®i of LL are similar to those of DLCBF, and 
P

®i

P

®i of FA is smaller 

than those of LL and DLCBF; even their ®® values are identical. 

C. Successful and Unsuccessful Search Costs 

Now, we are ready to compute the successful and unsuccessful search costs of FA. A 

search in an MFF starts from LV1LV1, and its cost is measured in terms of the number of 

probing cells over levels sequentially. The analysis gives us a clear view of the 

TABLE I: RESULTS OF LOAD FACTORS AND LOAD DISTRIBUTION  

(D,H) Results Method 
Load = 20% Load = 85% 

Lv1 Lv2 Lv3 Lv4 Lv1 Lv2 Lv3 Lv4 

(4,8) 

Exp. AVLF 

FA 2.992 0.008 0 0 7.88 7.472 4.528 0.16 

LL 1.632 1.616 1.544 1.392 6.808 6.816 6.8 6.792 

DLCBF 1.936 1.776 1.52 1.176 7.128 6.904 6.744 6.472 

Ana. load  

factor 

FA 2.992 0.008 0 0 7.896 7.48 4.464 0.128 

Exp. AVLD 

FA 0.998 0.001 0 0 0.617 0.293 0.088 0.002 

LL 0.543 0.226 0.128 0.058 0.534 0.267 0.132 0.066 

DLCBF 0.301 0.277 0.237 0.184 0.261 0.253 0.248 0.238 

Ana. load  

distribution 

FA 0.998 0.001 0 0 0.618 0.293 0.087 0.001 

(8,4) 

Exp. AVLF 

FA 1.564 0.06 0 0 3.856 3.736 3.304 1.776 

LL 0.804 0.796 0.796 0.796 3.48 3.476 3.332 3.128 

DLCBF 1.02 0.992 0.984 0.964 3.944 3.888 3.752 3.508 

Ana. load  

factor 

FA 1.564 0.06 0 0 3.86 3.74 3.3 1.744 

Exp. AVLD 

FA 0.98 0.019 0 0 0.57 0.276 0.122 0.032 

LL 0.505 0.249 0.124 0.062 0.514 0.256 0.123 0.057 

DLCBF 0.159 0.155 0.154 0.151 0.145 0.143 0.138 0.129 

Ana. load  

distribution 

FA 0.981 0.019 0 0 0.569 0.276 0.122 0.032 

Exp. AVLF: Experimental average load factor of 106106 trails,  

Exp. AVLD: Experimental average load distribution of 106106 trails. 
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differences among the MFF algorithms, especially for our implementations, where 

there is no special parallel programming optimization. 

Let CsCs and CuCu denote the average successful search cost and unsuccessful search 

 

Fig. 14. Experimental and analytic successful search cost (probing cell number) of FA, LL, and DLCBF at 

different loads and (D,H). Total cell number is 10k. FF=24 bits. 

 

Fig. 15. Experimental and analytic unsuccessful search cost. Each experimental value is the average of 

20-run measurement results. Each run contains 106106 unsuccessful search tests. Total cell number is 

10k. FF=24 bits. Notice ACBF does not influence Cu
FACu
FA

. 
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cost by measuring cell probing length. For a normal hashing (NH) with separate 

chaining in mm  buckets, the search costs can be shown by the closed-form 

expressions [65]: Cs
NH = 1 + ®

2 ¡
1

2mCs
NH = 1 + ®

2 ¡
1

2m
 and Cu

NH = ®Cu
NH = ®. For an MFF, an unsuccessful search 

is always terminated when all levels are probed for an item not existing in the filter. 

Therefore, for FA, the unsuccessful search cost can be simply expressed as the sum of 

load factors of each level 

 Cu
FA =

D
X

i=1

®iCu
FA =

D
X

i=1

®i                         (4) 

For a successful search of FA, let Cs
1Cs
1 denotes the successful search cost where the 

wanted item is found in LV1LV1. Like NH by separate chaining, assume the wanted item 

is located in LV1LV1, the probing length of a successful search is the number of items 

appeared before the item in its bucket plus one, and Cs
1 = 1 + ®1

2
¡ 1

2BN1

Cs
1 = 1 + ®1

2
¡ 1

2BN1

. On the other 

hand, if the wanted item is found at LVi; i > 1LVi; i > 1, the search must experience an 

unsuccessful search before probing LViLVi. Thus, Cs
iC
s
i  for an item in LVi; i > 1LVi; i > 1 can be 

expressed as: 

Cs
i = 1 +

®i
2
¡

®i
2BNi

+
i¡1
X

j=1

®j; for i > 1Cs
i = 1 +

®i
2
¡

®i
2BNi

+
i¡1
X

j=1

®j; for i > 1 

Then, the successful search cost of FA can be modeled as: 

 Cs
FA =

D
X

i=1

LDi ¢ C
s
iCs

FA =

D
X

i=1

LDi ¢ C
s
i                    (5) 

By simulation and Eqs. (4) and (5), Fig. 14 shows that the CsCs of FA and LL at high 

loads are both lower than those of DLCBF apparently, because the large part of items 

of FA/LL are located in LV1LV1. Next, the Cs
F A

Cs
F A

 and Cs
LL

Cs
LL

 of (8,4) are smaller than those 

of (4,8), because of their similar LDiLDi but different ®i®i values. In contrast, Cs
DLCBF

Cs
DLCBF

 

of (4,8) and (8,4) are very close. Finally, in Fig. 15, notice that Cu
F A

Cu
F A

 is clearly smaller 

than those of LL and DLCBF, because 
P

®i

P

®i of FA is the lowest in the three algorithms. 

In summary, Cs
LL

Cs
LL

 is slightly higher than Cs
F A

Cs
F A

and better than Cs
DLCBF

Cs
DLCBF

 obviously. 

Cu
F A

Cu
F A

 is the lowest, and Cu
LL

Cu
LL

 is similar to Cu
DLCBF

Cu
DLCBF

. 
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D. False Positive Rates 

For an MFF, a false positive occurs if and only if for a query of y =2 Sy =2 S , there exists 

x 2 Sx 2 S  with hf (x) = hf (y)hf (x) = hf (y) in any BEBE indexed by (hi(y) mod BNi)(hi(y) mod BNi). Namely, the fraction 

that this event occurs, called as false positive rate (PFPPFP ), is calculated from the 

probability that one of all possible cells produces the same fingerprint for y =2 Sy =2 S . Thus, 

a higher DD or HH increases Loadmax
(D;H)Loadmax
(D;H), but increase the probability of hash collisions 

and resulting PFPPFP .  

The PFPPFP  of an MFF(D,H) can be upper bounded by D ¢H ¢ 2¡FD ¢H ¢ 2¡F . Thus, MFF(4,8) and FF

=20 bits yield a PFPPFP  less than 3:051 ¢ 10¡53:051 ¢ 10¡5 . This PFPPFP  is low enough for many 

applications, and LoadsmaxLoadsmax of MFF(4; 8)(4; 8) all exceed 90%. Besides the discussion in Sec. 

3.5, this is the reason of choosing (4; 8)(4; 8)  and FF =20-bit as default settings. 

Furthermore, PFPPFP  of an MFF can be expressed as 

PPF =
D

X

i=1

®i ¢ 2
¡FPPF =

D
X

i=1

®i ¢ 2
¡F  

 

Fig. 16. The measured and expected false positive rates of FA, LL, and DLCBF with (4,8) under different 
FF  bits and filter loads. Each measured rate is the average of 20-run experiment results. Each run 
contains 107107 false-positive tests. Total cell number is 10k. 
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Fig. 16 shows the PFPPFP  of MFFs. Like CuCu of MFFs, FA has the lowest PFPPFP , and the 

PFPPFP  of LL and DLCBF are very similar. Finally, compared to CBF, MFFs use less 

memory; usually saving a factor of two at least for the same PFPPFP . 

3.2 Example: Replication of Traffic Classification 

By simulation, traffic classification (TC) is used to demonstrate the characteristics of 

MLCBF on state-machine replication. These results are not meant to cover the 

tradeoffs and real traffic mixes, but to give insight into practice and applicability of 

MLCBF in stateful replication. 

Network traffic classification (e.g., [66],[67]) is a typical example that needs state 

consistency amongst SPEs. This important technique categorizes packet flows for 

various applications, like security, load balancing, billing, and QoS. The most common 

approach is to rely on deep packet inspection for searching specific characters in 

payloads. The patterns used for identification probably exist only in the particular 

segments (e.g., the packets in very beginning of a flow). Thus, by replicating  

classification results, these collaborated SPEs readily identify packet flows in face of 

SPE failure and flow migration in AA scheme. 

We perform a simulation to investigate the performance of imprecise replication 

methods. We assume P2P, Skype, and instant messaging use application emulation 

by tunneling their communication over well-known ports (e.g., TCP port 80). Thus, 

according to a pre-defined state transition diagram (9 states totally), a classified flow 

could be reassigned to another state (e.g., from a state of “port 80” to “WWW” or 

“P2P”). Notice the transition diagram is not shown for the sake of brevity and a 

different FSM does not affect the evaluation results; a transition is processed by all 

replication methods for comparison. 

The simulation details are as follows: the flow key is TCP four-tuple, and the 

maximum flow number of SPE is 20k (i.e., 20k/LoadmaxLoadmax  cells for MFF). The 

parameters of CBF are described in Sec. 5.1. A simulation consists of 180 rounds. 

Initially, a number of items are inserted to the filters by their insertion algorithms 

according to a specific filter load. Then, in each round, we insert 2k to 10k new items 

with random keys, update their states according to the transition diagram to the 



國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授. 

 

53 

 

filters, send the update messages to the network interface, and remove them from 

the filters finally. This emulates an SPE of TC deploying replication that processes 

traffic for 180 sec at the rate of 2k to 10k cps under different initial filter loads. Figs. 

17 to 19 illustrate the simulation results. 

Fig. 17 shows the insertion costs of FA are much lower than those of LL and DLCBF, 

especially with the assistance of ACBF. The cost of FA(8,4) is less than that of FA(4,8). 

This implies FA(8,4) may have a better performance with the support of hash 

hardware accelerator and parallel techniques. Furthermore, the lookup and deletion 

cost (not shown in the figure) of these schemes closely match their performance of 

successful search costs. 

Figure 18 shows that the bandwidth consumption of CBF is higher than precise 

replication under the flow rates less than 6k cps. When the flow rates are larger than 

8k cps, the bandwidth requirements of CBF are improved because table updates are 

activated. The bandwidth reductions of MFF methods are 53% to 72%, depending on 

(D;H)(D;H), filter sizes, and flow rates. An MFF method is also benefit from table updates 

when processing high-rate traffic loading, because a smaller filter size enables the 

table update at a lower flow rate. In the test, the sizes of FA(4,8), CBF, and DLCBF(4,8) 

are 93 kBs, 195 kBs, and 95 kBs, respectively. By table update, the bandwidth 

consumption of an imprecise method is deterministic. MFFs meet the design goal of 

a scalable solution [68]; they continue to function gracefully as the load grows due to 

constant costs. In contrast, the cost of precise replication is proportional to the 

connection rate.  
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By rdtsc [69], Fig. 19 reports the measured CPU cycles of insert()insert() and lookup()lookup() 

implementations. First, the cycles increase as the load increases for an MFF and the 

 

Fig. 17. Measured insertion costs in TC simulation. The flow rate is 10k cps. 

 

Fig. 18. Bandwidth reduction of approximate methods as compared to precise replication at different 
flow rates and filter loads. 

 
Fig. 19. Average insertion and lookup times of MFFs and CBF at different loads. Flow rate is 10k cps. 
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performance of CBF is proportional to the number of hash functions. For any given 

load, the insertion cycles of FA are lower than those of DLCBF and LL and ACBF 

indeed enhances the performance of FA, especially for insertions. Moreover, FA 

provides a considerably better performance than other methods in lookups. For 

instance, FA yields an improvement of 2 to 7 times for CBF on lookups. For all 

methods, their cycle times of modify()modify() and delete()delete() are similar to those of lookup()lookup().  

Second, because MFFs are implemented by level-based hierarchy, increasing DD 

drastically impedes the performance. In Fig. 19, the latency of (4; 8)(4; 8) is better than 

(8; 4)(8; 4) obviously. In the receiver, the costs of all methods to update the backup filters 

for single incremental message are below 550 cycles. In summary, FA has the same 

bandwidth reduction ratios with LL and DLCBF, and it outperforms other methods on 

the latency, especially with the support of ACBF for insertion.  

In simulation, the average time for inserting an item into normal state table at 60% 

load is 67,875 cycles; much higher than those of imprecise methods. Though the 

measurement on CPU cycles highly depends on the implementation, it gives us a 

practical look at the differences among the replication methods and logical 

architectures in Figs. 1 and 20. We significantly reduce the latency of replication 

processing in the receiver by compact filters and the strategy of architectural 

separation. 

Finally, for MFFs, we favor setting HH  to be a larger and practical value and a smaller 

DD according to the above results. Though (4; 4)(4; 4) may be a better choice because of its 

lower insertion and search costs, LoadsmaxLoadsmax of MFF(4,4) are only around 84%. We 

choose (4; 8)(4; 8) as the default setting due to its balance on LoadmaxLoadmax,  filter size, and 

latency. 
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3.3 MLCBF as Key-and-State Representation 

Fig. 20 illustrates a new design of logical SPE architecture. I improve replication 

through two factors: 1) a compact data structure is designated to store and replicate 

the state changes, and 2) an architectural separation prevents state table from the 

access by replication traffic. This makes state table inaccessible to RMP, alleviates 

resource competition, and avoids valuable table entries occupied by the other SPE 

before necessary. 

In Fig. 20, the state table for storing < precisekey; state >< precisekey; state > can be replaced further by 

MLCBF or stateful Bloom filter. This minimizes memory costs effectively at cost of 

introducing false error probability on the tracking of pass-through traffic. In my 

implementation, I still use a hash table to store precise data to verify the false rates 

and error conditions in all experiments. 

For key-and-state access, I utilize MLCBF to support insert(key; state)insert(key; state) , 

 

Fig. 20. New data flow inside SPE using MLCBF as replication data representation. 
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modif y(key; state)modif y(key; state), lookup(key)lookup(key), and delete(key)delete(key) operations. 2C ¡ 12C ¡ 1 is equal to 

the highest state number. The idea is simply to store the fingerprint hf (x)hf (x) of a key xx 

and its state into MLCBF. For example, if the state transition of an URL (i.e., key) is 

changed from 2 to 7, the hash signatures of the URL, including h1 ; : : : ; hDh1 ; : : : ; hD of DD levels, 

hf (x)hf (x), and digital indices into ABCF, are calculated. Then, the cell is found by 

hi(URL) mod BNihi(URL) mod BNi and hf (URL)hf (URL), and the CCCC  is updated to 7 accordingly. 

In practice, using randomization to represent the flow states may introduce some 

types of errors. If the lookup on a non-inserted flow returns a valid state, it is called 

as false positive (FP). If no valid state for an active flow, it is called as false negative 

(FN). If the returned state is not correct, it is called as an inaccurate state (IS). These 

errors are not only introduced by hash functions (i.e., PF PPF P ) but probably also by 

bucket/counter overflows, fingerprint collisions during dynamic operations, and early 

recycling of active flows by memory management. 

In update phase, two methods called table-update and incremental (delta) update 

are used as the representational units. The table-update copies entire filter and 

keeps the bandwidth requirement as constant, which is critical at high flow rates. 

However, copying entire filter is clearly not economical at small flow rate or high 

update frequency because the filter may be only slightly different from the previous 

one. An alternative method is to use delta or incremental messages. The messages of 

CBF and MFF are < hashindex; state >< hashindex; state > and < level; bucket; hf (x); state >< level; bucket; hf (x); state >. Though the size 

of single message of CBF is smaller than MLCBF, as a Bloom filter-based method, the 

message number of CBF is identical to the number of hash functions. Incremental 

update can be used in various flow rates while table update gives an upper bound of 

communication costs. A sender depends on the total message size at a transfer to 

decide whether incremental messages or entire filter should be sent. 

Stateful replication can be performed immediately or based on a specific criteria (e.g., 
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periodic or false-rate-control [70]). The first strategy keeps maximum consistency 

and the second one usually alleviates CPU loads. 

MLCBF can be enhanced by the techniques to handle the counter overflows [33] and 

bucket overflows (e.g., by expanding DD) and the techniques like item migrating or 

rehashing during an insertion [71],[72]). However, these techniques complicate RMP 

and need more network costs. Thus, I simply avoid any overflow by sufficient cells 

and CCCC  bits. 

3.4 Symbol Replacement for MLCBF 

If the number of state changes exceeds a threshold (e.g., five), an orthogonal scheme 

called symbol replacement can be applied to incremental update for higher 

compression ratios for various flow rates. 

The idea is similar in spirit to the IP header compression [73] which converts the 

constant part of an updating message to a replication number to remove redundant 

overhead in each message. There are two types of incremental messages: 

uncompressed and compressed. For the first message of an active flow, the sender 

gets the first free entry (with an entry ID) in a list to store the constant information 

(e.g., for MFFs, they are the fields of level number, bucket index, and fingerprint), 

and marks its type as uncompressed. Upon receiving an uncompressed message, the 

receiver also gets the first free entry to copy static data. Thus, the immutable parts of 

the following messages (marked as compressed) of the flow are replaced by a 

replication number (i.e., entry ID). In the receiver, it looks up the entry by the 

replication number and decompresses static data to update the backup filter.  

It is necessary for symbol replacement to ensure the entry IDs allocated by a flow are 

identical both in the sender and receiver. Therefore, it is imperative that the order of 

incremental messages chosen by the sender must be followed equivalently at each 

receiver. For simplicity, we assume that SPEs communicate by TCP or reliable UDP. 

Thus, because the messages are sent in-order, the receiver can execute the same 

order of the sender so far. 
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3.5 Dynamic Lazy Insertion on Stateful 

Replication 

Thus far, to guarantee consistency, state changes are forced to be synchronized 

precisely. However, this approach is expensive sometimes, especially when system is 

going to be overloaded. To meet the 3
rd

 design goal in Sec. 2.3, I explore an adaptive 

mechanism for TCP flows to control replication based on the utilization of system 

bottleneck. I assume that system is CPU-bounded. Notice for the systems like 

intrusion prevention systems and traffic classification appliances, CPU-bound is not 

rare because they are usually deployed in campuses and ISPs to handle high-rate 

short flows and traffic over 800Mbps. 

Measurements of the Internet traffic have shown that most TCP flows are 

short-running [74],[60] and that small long flows (e.g., less than 20%) carry a high 

proportion (e.g., 85%) of the total traffic [60],[61]. These studies imply that the 

major costs come from short flows when doing replication, but focusing on long 

flows protects the majority of network traffic (in bytes) and profits. Furthermore, 

though approximate replication performs better in bandwidth and memory 

requirements, it might be difficult to significantly alleviate the CPU loads from 

replication. 

To address this issue, I differentiate between short and longer flows. Dynamic Lazy 

Insertion (DLI) is proposed for balancing the replication loading and the protection 

on pass-through flows to optimize system throughput. DLI has the advantages of fast 

estimation, simple to implement, and no requirement of pre-existing knowledge for 

network traffic. 

To detect long flows, several metrics can be used, like packet number [62] and 
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aggressive flow [3]. For simplicity, I resort to a lifetime-based classification. The term 

flow age and flow lifetime are used to indicate the duration time a flow has so far 

existed and the total time of a flow from start to completion. The basic idea of DLI is 

as follows: a dynamic lazy threshold tthresholdtthreshold  is used by incorporating the 

information of the CPU utilization and historical flow behavior over the cluster node. 

The CPU utilization UmeasuredUmeasured  is measured at given time intervals. If UmeasuredUmeasured 

exceeds a pre-defined usage threshold UthresholdUthreshold  below 100% (i.e., the system 

becomes overloaded), tthresholdtthreshold for the next interval is increased to filter more 

“shorter” flows. Otherwise, tthresholdtthreshold is decreased. Namely, for a “longer” flow, the 

replication is postponed for tthresholdtthreshold. For the flows whose lifetimes are shorter than 

tthresholdtthreshold, no operation will be invoked. For some SPEs, focusing on the long flows 

improves the resource utilization by fewer socket I/Os and hash calculations, thereby 

reducing the false positives and the frequent accesses on the remote state table. 

Replication with tthresholdtthreshold > 0 ms is called as lazy replication. Otherwise, it is called as 

immediate replication. 

For smoother operations on the lifetime measurements, it would be beneficial to 

incorporate historical information in DLI. In general, stateful tracking keeps track of 

flow lifetimes since booting. The times tmintmin and tmaxtmax are defined as the minimum 

and maximum boundaries of lifetime tracking. If the age of a flow exceeds tmaxtmax, then 

its lifetime is immediately updated as tmaxtmax to update the longer flows in more 

“real-time”. The maximum trigger is identical to the timeout of SYN_SENT state (e.g., 

20 sec [37]). On the other hand, accurate lifetime measurement requires small time 

granularity and the interval of periodic clock interrupt (10 ms on most x86 systems) 

is set as the minimum bin size. A history array stores the number of total completed 

flows and counters for all lifetime bins. 
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To compute tthresholdtthreshold, I use cumulative lifetime distribution to map the desired level 

of replication degradation. Let’s consider MM  discrete levels that are numbered 

1; : : : ; M1; : : : ; M  from the lowest degradation to the highest one. Level 0 is denoted as the 

special case of immediate replication. Let pp denote as a dynamic control parameter 

in the range [0; M ][0; M ] and assume pp is an integer. tthresholdtthreshold is supposed to reduce the 

replication operations by a ratio of p=Mp=Mand then improve the system performance. I 

therefore suggest a periodic method, in which pp is re-evaluated on a sequence of 

time boundaries T1 ; T2 ; : : : ; Ti ; : : :T1 ; T2 ; : : : ; Ti ; : : : and the length between two boundaries is denoted 

as TintervalTinterval (say, each 5 sec). 

Let tthresholdit
threshold
i denote the minimal flow age between tmintmin and tmaxtmax to be replicated in 

the interval Ti+1Ti+1
. Also let tmeasured

i;jtmeasured
i;j  denote the threshold of jthjth degradation level 

estimated from the lifetime distribution between Ti¡1Ti¡1
 and TiTi

, and tpastjt
past
j  the 

threshold of jthjth level estimated from the distribution between T0T0 and Ti¡1Ti¡1
, for 

j = 0; 1; : : : ; Mj = 0; 1; : : : ; M . To balance the stability and responsiveness, the distributions in the 

previous interval TiTi
 and the past history are both used to compute a tthresholdtthreshold for 

the next TintervalTinterval
. Thus, two history arrays are used. Then I consider a function Fp(i)Fp(i) 

defining tthresholdi+1tthresholdi+1  at time TiTi
 in the following way: 

½

Fp(1) = tmeasured
1;0

Fp(i) = (1 ¡RDLI) ¢ Fp(i¡ 1) + RDLI ¢ tmeasured
i;p

½

Fp(1) = tmeasured
1;0

Fp(i) = (1 ¡RDLI) ¢ Fp(i¡ 1) + RDLI ¢ tmeasured
i;p

 

In the above equation, Fp(i ¡ 1)Fp(i ¡ 1) is equal to tpastpt
past
p . The factor RDLIRDLI is a parameter in 

the range [0; 1][0; 1]. RDLIRDLI is set as 0.7 to put a higher weight on the observation of the 

Algorithm 2 Pseudo-code of DLI 

Function DLI 

1:      wait for TintervalTinterval 
2:      if Umeasured > UthresholdUmeasured > Uthreshold then 
3:           p Ã p + 1p Ã p + 1 
4:      else 
5:           p Ã p ¡ 1p Ã p ¡ 1 
6:      endif 

7:      calculate the next lazy threshold by Fp(i)Fp(i), update the latest statistics 

8:      to the past history array, and reset the array of the latest interval 
____________________________________________________________ 
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latest interval for better responsiveness. After computing tthresholdi+1tthresholdi+1 , the statistics in 

the interval TiTi is updated to the history array for the interval T0T0
 to Ti¡1Ti¡1

. Algorithm 

2 describes the self-tuning algorithm. By adjusting pp, I can dynamically control the 

replication costs under various traffic mixes, especially CPU utilization. A lower 

UthresholdUthreshold (e.g., 60%) leads to a better peak throughput when overloading in price of 

an earlier lazy replication. Furthermore, for adapting to the locality of lifetime 

distribution, DLI provides more flexibility by making a smaller step size (e.g., 20 ms) 

when pp is low and a larger size (e.g., 200 ms) when pp  becomes high. Note that the 

state changes of a flow whose replication is postponed are still transmitted in-order 

to keep RMP simple. 

The steps to compute the lifetime threshold (denoted as tthresholdtthreshold) periodically of 

Dynamic Lazy Insertion (DLI) is the focus in the rest of this section. Figure 21a 

illustrates how to compute the lifetime threshold by a mapping between MM  discrete 

levels and a cumulative lifetime distribution observed from tmintmin to tmaxtmax. In Fig. 21a, 

MM  is set to 10, while Level 0 represents no lazy replication. For example, in Fig. 21a, 

the lifetime threshold of Level 8 is thus supposed to reduce 80% of replication costs. 

Notably, pp  is the current degradation level in the range [0; M ][0; M ] , and pp  is 

re-evaluated periodically on a sequence of time boundaries T1; T2; : : : ; Ti; : : :T1; T2; : : : ; Ti; : : :.. When 

measured CPU utilization (denoted as UmeasuredUmeasured) is larger than a pre-defined CPU 

threshold (denoted as UthresholdUthreshold), the degradation of replication operations starts 

from Level 1 and continues to Level MM  if necessary. Restated, every TintervalTinterval, if 

UmeasuredUmeasured > UthresholdUthreshold (i.e., overloading), pp is increased to alleviate the CPU loads 

from replication operations. Otherwise, pp is decreased. 

Figure 21b depicts the concept and steps of computing lifetime threshold tthresholdtthreshold 

at TiTi for the next interval. Assume pp  for the interval between TiTi and Ti+1Ti+1 is 

increased from Level 2 to 3 due to overloading. Notably, tmeasured
i;3tmeasured
i;3  is computed by 

computing the lifetime threshold of Level 3 from the cumulative lifetime distribution 

observed between between Ti¡1Ti¡1 and TiTi. Next, tpast3t
past
3  is estimated by the cumulative 

distribution observed from T0T0  to Ti¡1Ti¡1. The lifetime threshold tthresholdit
threshold
i  for the 
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interval between TiTi and Ti+1Ti+1 is then computed as 

tthresholdi = (1 ¡ RDLI ) ¢ tpast3 + RDLI ¢ tmeasured
i;3tthresholdi = (1 ¡ RDLI ) ¢ tpast3 + RDLI ¢ tmeasured
i;3  

In this work, the factor RDLIRDLI is set as 0.7 for better responsiveness. 

  

 

Fig. 21. a) Mapping between degradation levels and corresponding lifetime thresholds over an observed 
cumulative lifetime distribution, and b) an illustration of the steps to compute tthresholdit

threshold
i . 
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3.6 Implementation and Testbed Setup for MLCBF 

The experiments were performed on a testbed consisting of two identical 3-port 

machines (Intel Pentium-4 2.0 GHz, 512-kB L2 cache, and 1024 MBs RAM) as the SPEs 

in HAC. Two SPE nodes are connected with a 100 Mbps LAN (the replication link) and 

the external and internal ports are connected with Gigabit Ethernet networks (the 

pass-through link). To measure CPU utilization, Linux facility dstat is executed with 

1-sec bin. Other statistics, such as update message size, are collected with 5-sec bins. 

By the design of Fig. 20 and C language, replication methods, DLI, and symbol 

replacement are implemented as a kernel-space module in Linux 2.4.20. As a state 

table, a hash table by separate chaining is used to store precise keys, (states) 

counters, and metadata. 

In this dissertation, four types of traffic generators are used: powerful IXIA machines, 

simulator of traffic classification, simulator to analyze the filters, and real traffic 

traces. Notice the simulation to study the filter properties is also performed by my 

prototype platform. The random keys in test are read from Linux /dev/urandom. The 

TABLE III: SIMULATION RESULTS OF URL CATEGORIZATION BY REAL URL COLLECTIONS FROM NLANR [63]. 

MEMORY AND NETWORK BANDWIDTH REQUIREMENTS OF IMPRECISE REPLICATION METHODS. 

Access list name 

and time 

Total 

access 

logs 

Total 

unique 

URLs 

Mean 

URL 

size 

(bytes) 

URL 

string 

size (kBs) 

CBF MLCBF-FA(4,8), FF=20-bit 

Mem 

(kBs) 
Reduction 

Net 

(kBs) 
Reduction 

Mem 

(kBs) 
Reduction 

Net 

(kBs) 
Reduction 

bo2(2007/01/09) 241,173 144,852 57 13,534 2,355 82.6% 2,247 83.4% 1,271 90.6% 848 93.7% 

bo2(2007/01/10) 207,704 133,420 56 11,384 2,028 82.2% 2,069 81.8% 1,095 90.4% 781 93.1% 

rtp(2007/01/09) 3,176,785 1,653,579 59 184,066 31,023 83.2% 32,100 82.6% 16,752 90.9% 9,688 94.7% 

rtp(2007/01/10) 2,986,122 1,501,494 58 169,990 29,161 82.9% 29,153 82.9% 15,747 90.7% 8,797 94.8% 

sd(2007/01/09) 1,426,885 879,114 55 77,341 13,934 82.0% 13,638 82.4% 7,534 90.3% 5,151 93.3% 

sd(2007/01/10) 1,497,891 933,756 55 81,420 14,627 82.0% 14,484 82.2% 7,899 90.3% 5,471 93.2% 

 

TABLE II: IP PACKET TRACES FROM NLANR [63]. 

IP packet trace name and time 
Max. active 

TCP flows 

Avg. SYN  

pkts per sec 

IPSL-1 (2001/08/14/09:00 – 09:10) 159,394 1199.12 

IPLS-3 (2004/06/01/19:40 – 19:50) 159,210 5796.61 

AUCK-4 (2001/04/03) 38,604 308 
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prototype of SPE synchronizes its receiver by reliable UDP. For TCP flows, inactivity 

timeouts for the entries stayed in SYN_SENT, ESTABLISHED, and FIN_WAIT are 20, 60, 

and 20 sec. 

For CBF, the number of hash functions is 4, and load factor of CBF (i.e., m=nm=n, the 

ratio between the number of filter slots and the number of inserted items in 

maximum) is 10. The PF PPF P  is about 1.2% in theory. 

The hashing throughput is studied by many works. SHA-1 is chosen because of its 

available fast implementation. I use an open-source SHA-1 with modification to 

support the requirements of DD hash functions, fingerprint and signatures of CBF. 

In practice, network traffic is time and link dependent. This makes it impossible to 

evaluate all possible traffic mixes. To overcome this limitation, I validate the 

proposed methods by trace-based simulation on IP packets and URL access logs. The 

environment and parameters of trace-based simulation are identical to those of 

testbed experiments. After processing all logs, the FP rates are verified by a round of 

TABLE IV: DEFAULT PARAMETER LIST IN EXPERIMENTAL TESTS 

 Parameters Description Value 

M
F

F
 

(D;H)(D;H) (level, height) of an MFF (4;8)(4;8) 

LoadmaxLoadmax Maximum achievable load 93.65% for  FA(4; 8)(4; 8) 

RR Decreasing ratio of MLCBF 0.5 

FF  Fingerprint size 20-bit 
D

y
n

a
m

ic
 L

a
zy

 I
n

se
rt

io
n

 

tthresholdtthreshold Lazy threshold 50 – 2k ms  

UthresholdUthreshold 
Boundary CPU load  

to change tthresholdtthreshold 
90% 

pp  Current lazy level 0 – MM  

MM   Maximum lazy level 10 

tmaxtmax Maximum flow lifetime 20k ms 

tmintmin Minimum flow lifetime 10 ms 

TintervalTinterval Interval to compute next tthresholdtthreshold 5 sec 

RDLIRDLI  Responsiveness ratio 0.7 
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106106 items with the random keys (as URLs or TCP four tuples) that do not exist in state 

table. The FN and IS rates are verified by comparing the precise key and state stored 

in state table with the data in filters. 

For URL applications, six one-day collections of HTTP requests downloaded from 

NLANR [63] are used in analysis. Table I lists the information of traces in detail. URL 

string size is the sum of all distinct URL string lengths. 

For SPEs on TCP flows, the replication schemes are applied to the bi-directional 

10-min traces of Abilene-I, Abilene-III, and the University of Auckland (denoted as 

IPLS-1, IPLS-3, and AUCK-4). Table I shows the maximum concurrent TCP flows and 

packet arrival rates. For fair comparison, I ignore purposely the replication of the 

flows whose SYNs were not captured, though this leads to an underestimation of 

pass-through traffic (especially long flows) and replication costs. Furthermore, due to 

the fact that routes may be asymmetric at backbone, there is a minor-tuning in TCP 

tracking. 
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4. Evaluations of Stateful Replication Using 

MLCBFs 

4.1 Replication for State-Machine Tracking 

A. URL categorization 

In URL categorization, there are numerous master servers to collect and classify URLs 

through the technology of web content classification. As shown in Fig. 1, the 

categorization result enables the SPEs in gateway to classify HTTP traffic by URLs. An 

operator can thus establish management policy by useful categories, such as 

malicious threats and adult content. There are 50 to 90 categories usually, which are 

represented by integers. 

Usually, an URL request received by an SPE is sent to one of master servers for 

classification. A service provider reported that they receive over 100 million requests 

for categorization per day. Thus, the caching of categorization results in SPEs can 

accelerate pass-through web traffic, alleviate the loading of master servers, and 

reduce bandwidth costs among the SPEs and masters.  

To study replication performance, a state number, which follows a Poisson 

distribution between 1 and 127, is assigned to each distinct URL of a trace file. All 

request logs are inserted to state table to find out unique URLs at first, and no URLs 

are removed during the experiment. The distinct URLs are then inserted to the filters 

to trigger update messages. The number of cells of an MFF is set up according to the 

number of total access logs. 
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Table III shows the resource reduction ratios achieved by FA and CBF. We use “URL 

string size” as the size of a key to compute memory/network requirements of precise 

replication. The memory and bandwidth reduction rates of FA are as high as 90.9% 

and 93.1% at least. The results indicate the approximate methods reduce the 

resource consumptions of URL categorization significantly. 

By FF=20-bit and (4,8), the range of FP rates of MFFs for six collections is from 

0.0003% to 0.0012%. The IS rates are all smaller than 0.0014%. The FP and IS rates of 

CBF at a loaf factor of 10 are 0.637% and 14.96%. By a load factor of 40 for CBF, they 

are 0.0012% and 1.5% at a cost of 4 times memory requirements. The FN rates are 

zeros, because of no URL removal and no overflow. 

Fig. 22 shows the resulting false rates of MFFs by varying FF . With an FF  of 24 bits, 

the FP and IS rates are about 0.0001% and the filter size is lower than 21 MBs for 

rtp(2007/1/10) at 80% load. The resource requirements and false rates observed in 

the tests are likely to be reduced in practice, because it is expected that an SPE and 

its backups would not contain so many URLs. It is probably that only a set of the most 

frequently accessed URLs would be stored. Finally, the average times of the 

insertions and lookups on the state table take 31,566 and 1,759 cycles. By contrast, 

 

Fig. 22. FP and IS rates of MFF-based methods in bo2(2007/1/10) and rtp(2007/1/10) at 80% load for URL categorization. 
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they are only 1,211 and 425 cycles for FA, and 2,426 and 1,210 cycles for DLCBF. 

B. TCP State Replication 

We tune tthresholdtthreshold from 0 to 2k ms in simulation to understand the performance of 

imprecise methods and the effects of lazy replication. Driven by TCP flows from the 

traces, replication methods synchronize six state changes, including SYN_SENT, 

SYN_ACK_RCV, EST, WAIT_CLS, HALF_CLS, and flow completion, by incremental 

update. By Table III, for IPLS-1 and IPLS-3, the total cell numbers of MLCBF, DLCBF 

and CBF are 170,848, 173,900 and 2,000,000. For AUCK-4, they are 42,712, 43,400, 

and 400,000 cells, respectively. In IPLS-1 and IPLS-3, the sizes of FA, DLCBF, and CBF 

are 750 kBs, 764 kBs, and 1,953 kBs; all not a concern for modern equipments.  

Figures 23 to 25 illustrate the results of TCP replication in AB scheme. Fig. 23 shows 

 

 

Fig. 23. Storage utilization of MFF(4,8) in IPLS-3 for a) TCP state replication and b) TCP membership 

replication. Only first three levels are illustrated. 
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the storage utilization of MFF in IPLS-3. The oscillation of utilizations in Fig. 23 comes 

from inactivity timeouts. Obviously, LV1LV1 and LV2LV2 of FA fill up with the most part of 

flows. 

In state replication, we found tthresholdtthreshold does not obviously influence the bandwidth 

savings of MFFs and CBF. The reduction rates of CBF in AUCK-4 for all tthresholdtthreshold are 

around -15.14% as compared to precise replication. By contrast, the reduction rate of 

FA is 61.54% and is improved to 71.23% by symbol replacement. 

Because most TCP flows are short-lasting, they dominate replication cost. Fig. 24 

shows the effects of TCP flow lifetimes on state and membership replication. Fig. 24a 

 

Fig. 24. The effect of tthresholdtthreshold  on FA for a) state replication and b) membership replication. 

 

Fig. 25. False rates and operation overheads of CBF and MFF-based methods in IPLS-1 trace for TCP 
state replication. 
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shows that when tthresholdtthreshold=50 ms, due to the savings of replicating one-way flows [64] 

and malicious SYN packets, the reduction ratio of FA is as high as 35.11% in IPLS-3. In 

IPLS-3, flow analysis shows that 87.1% of the recycled SYN_SENT entries are allocated 

by one-way flows. These one-way flows significantly consume replication bandwidth 

unnecessarily. 

A clear rise on the replication traffic reductions is observed when tthresholdtthreshold < 500 ms. 

For IPLS-3 in Fig. 24a, reducing 53.21% (tthresholdtthreshold=200ms), 75.25% (tthresholdtthreshold=650 ms), 

and 78.52% (tthresholdtthreshold=2k ms) of replication traffic only excludes 12% of pass-through 

bytes in maximum. Thus, a small tthresholdtthreshold like 500 ms (or ignore the flows less than 

six packets [74]) can be useful for alleviating system load, reducing bandwidth 

consumption, and still protecting the majority of traffic bytes for TCP replication.  

Fig. 25 shows the false rates and operational overheads of TCP state replication in 

IPLS-1. Like URL categorization, the false rates of MFFs are much lower than those of 

CBF which is not suitable for TCP state replication. 

4.2 URL and TCP Membership Replication 

A. Comparison to Summary Cache 

Summary Cache (SC) [7] can be viewed as a kind of stateful replication; it summarizes 

a snapshot of incoming URLs for a proxy by a CBF from scratch and keeps the filters 

consistent between its local cache and neighbors as URLs are inserted and deleted. 

With the same parameters of URL categorization, we compare the performance of SC 

and MFF(4,8) for propagating a snapshot of URL collection.  

By incremental updates for rtp(2007/1/10), SC using load factor of 10 transmits 

21,252 kBs versus 8,797 kBs of FA. The reduction rates of SC for six collections are 

between 81.9% and 88.86% for memory and bandwidth requirements compared to 
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precise replication. The reduction rates of MFFs on memory requirements range from 

90.27% to 90.9% and the bandwidth reduction rates are between 93.28% and 

94.82%. In bo2(2007/1/10), with a load factor of 10 and 4 hash functions, the 

average PFPPFP  of SC is 0.026305%, but the PFPPFP  of FA, LL and DLCBF with an FF  of 20 

bits are 0.001015%, 0.00173%, and 0.001595%. To achieve a comparable PFPPFP  (say, 

0.0015%), SC needs a load factor of 40 with 4 hash functions. However, the memory 

and bandwidth requirements are increased to 7.40 and 2.32 times of FA. 

For SC, more hash functions decrease PFPPFP , but increase the memory accesses and 

bandwidth consumption by incremental update. By contrast, FA can reduce PFPPFP  

effectively by increasing FF , and the bandwidth cost only increases a little. As a useful 

feature of MFF, this avoids the change of (D;H)(D;H) and LoadmaxLoadmax for a smaller . 

B. TCP Membership Replication 

In [9],[10], Flow Digest (FD) is used to replicate the membership information of 

pass-through TCP flows (namely, TCP tracking in Fig. 1). To compare performance, all 

methods generate two events (i.e., EST and flow deletion). 

Compared to precise replication, the bandwidth reduction rates of FD in the three 

traces for tthresholdtthreshold between 50 and 2k ms range from 7.86% to 8.35%, and those of 

MFF-based methods are 60.07% to 61.73%. Fig. 24b illustrates, at tthresholdtthreshold=500 ms, 

the bandwidth reduction ratio of FA is as high as 95.95% in IPLS-3. Finally, for IPLS-3 

without lazy replication, the FP rates of MFFs are all below 0.0008% due to low 

utilization as shown in Fig. 23b. Since only the established flows are inserted to the 

filters, the overhead from one-way flows is avoided completely. 
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4.3 Testbed Study for DLI and SPEs in AA Scheme 

To this end, the testbed study is used to demonstrate feasibility and effectiveness of 

DLI. We also show that imprecise replication increases the aggregated throughput of 

SPEs on pass-through traffic in AA scheme. 

Two connection types, short and long flows, are generated by IXIA machines to 

stress the primary SPE. A short flow completes its establishment and termination 

quickly (mainly within 10 to 50 ms). The initial values of tthresholdtthreshold and pp  are set to 0. 

Fig. 26a illustrates the system behavior with precise TCP state replication and DLI. 

Initially, HTTP traffic (long flows) is used to measure pass-through (link) throughput. 

Then, two sets of short flows (27k and 10k cps) are inserted. With the 1
st

 set, the 

throughput degrades dramatically, but CPU does not surpass UthresholdUthreshold. After 2
nd

 set 

 

 

Fig. 26. a) Behavior of primary SPE with TCP state replication and DLI in AB scheme, and b) The 

aggregated throughput of two SPEs of HAC in AA scheme under high-rate short flows. 
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insertion, system exhibits saturation. Then, DLI quickly brings CPU to oscillate around 

UthresholdUthreshold by adjusting tthresholdtthreshold around 48 to 68 ms.  

Because the high-rate short flows almost complete within 50 ms and become 

indivisible in degradation, DLI exhibits over-degradation behaviors; over 98% of 

replication traffic is eliminated in a TintervalTinterval, where pp = 3 only and tthresholdtthreshold>50 ms. 

The problem can be solved by restricting the reduced replicating operations in a 

TintervalTinterval in the range [0; p=M][0; p=M] when pp > 0. Though this heuristic takes more steps 

to the optimal point, it avoids over-degradation effectively. In Fig. 26a, DLI controls 

replication effectively to alleviate CPU load, thereby enhancing the throughput from 

77 to 224 Mbps. In contrast, CPU without DLI exhibits saturation by two short-flow 

sets. Finally, without replication, the maximum throughput under two sets of short 

flows is 259 Mbps in average. 

Next, we measure the end-to-end throughput of our HAC in AA scheme consisting of 

two SPEs using TCP state replication. In test, two pass-through links of HAC are 

stressed by the same rates of short flows at first and the aggregated throughput (i.e., 

pass-through throughput of HAC) of HTTP traffic on two links are measured under 

these high-rate flows. Fig. 26b reports that SPEs using imprecise replication 

outperforms those by precise one, especially at short-flow rates over 18k cps. For 

example, at 27k cps and without DLI, FA improves the aggregated throughput from 

716 to 850 Mbps. Moreover, Fig. 26b shows DLI apparently increases pass-through 

throughput of HAC at 27k and 36k cps. Finally, at 42k cps, two SPEs are almost 

saturated by incoming pass-through packets; even without any replication. 
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4.4 Other Potential Applications 

4.4.1 Using MLCBF as Data Representation for Stateful 

Replication 

Stateful SPEs using replication are widely deployed in kinds of network environments. 

Thus, stateful replication using randomization may benefit an application which 

employs a set of peers to share information. An example is intrusion detection and 

traffic classification on SCTP [20]. SCTP provides fault tolerance by multi-homing 

which connects to the Internet over multiple network access links.  

The SPEs deployed on different links must synchronize for inspecting SCTP 

associations. Our methods can naturally be used in conjunction with the techniques 

like cooperative intrusion detection [75] and may be also suitable for other 

fault-tolerant SPEs, (e.g., WWW firewalls [76] and VoIP intrusion detection [77]). 

4.4.2 Using MLCBF as Local Caching of Network-based URL 

Filtering 

In ISP, enterprise, and SOHO networks, URL filtering is widely used to prevent users 

 

Fig. 27. The general overview of network-based URL filtering. 
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to access unwanted and malicious web sites. Several service and device providers like 

Cisco, Websense, Surfcontrol, Blue Coat, and Gemtek provide network-based URL 

filtering (NUF) as a solution to classify, monitor, and control web traffic. Figure 27 

illustrates the schematic procedure of NUF.  

1. The end user browses a page on the web server, and the browser sends an HTTP 

request to the web server. 

2. After the gateway receives HTTP request, it extracts the URL from the HTTP 

request. The URL is then sent to the network servers for analysis, while the 

HTTP request is forwarded to the web server simultaneously. For safety, each 

gateway needs to be authenticated before sending requests to the network 

server. 

3. After the network server receives the analysis request, it checks its database to 

classify the web site represented by the URL. It then returns an integer 

representing the category of URL. Restated, the analysis result of a URL is just an 

integer (i.e., categorization ID) which represents a specific category. For example, 

“P2P” is represented by integer 2 and “online news” is 30. Notably, there are 50 

to 90 categories usually, which are all represented by integers. 

4. The HTTP response from the web server is queued for waiting for the decision 

by the gateway. 

5. After getting the analysis result from the network server, the gateway sends or 

blocks the corresponding HTTP response according to the analysis result and 

management policy. For example, assume that although the P2P access is not 

allowed in an enterprise, the management policy allows for P2P access from an 

internal testing laboratory. Consider the classification result of a specific URL is a 

web site of P2P forum. If the source IP is in the range of the testing laboratory, 

the gateway sends the HTTP response to the end user. Otherwise, it sends a 

warning page to the end user. 

NUF provides two important benefits over gateway-based URL filtering (GUF) which 

analyzes the URLs by simply comparing them with the local database in a gateway 

and updating the database continuously. 
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1. NUF can employ a cluster of powerful servers to quickly analyze extracted URLs 

using multiple complex techniques, including blacklist, web content inspection, 

and intelligent behavioral analysis. Moreover, the network servers are able to 

cooperate for detecting new malicious URLs more quickly because they collect 

and analyze URLs in a bird’s eye view. Such comprehensive capability can 

significantly increase the detection coverage and accuracy of URL classification. 

2. Compared to GUF, the task of a gateway of NUF is only to extract URLs from HTTP 

requests, send them to the network server, and wait for the responses. This 

lowers the implementation complexity of a gateway engine of NUF, while the 

gateways no longer need to continually update local databases, thereby reducing 

administrative cost. Next, simplifying the engine allows the service to be used in 

resource-limited devices (e.g., mobile phones) that lack sufficient computing 

power but remain as a target of malicious web sites. 

However, a service provider of NUF reported that they receive over 100 million 

requests for URL categorization per day. The bandwidth consumption amongst the 

gateways and network servers is therefore the key factor of the capacity and the 

maintenance cost of the service. Furthermore, waiting for the response from the 

network server indeed introduces processing delay to web traffic. In our preliminary 

tests, the average network latency from our laboratory to three network servers of a 

service provider is between 100 to 500 ms. This motivates us to design an efficient 

model for NUF to reduce the bandwidth cost between the gateways and network 

servers, while accelerate the processing time in the gateways of NUF. The first idea is 

the local caching of URL analysis results in the gateways. The second idea is to use a 

hashing structure as the data representation of local caching. 

To minimize the resource requirements of NUF, MLCBF can be introduced to address 

this issue, and specifically we show that how to integrate MLCBF into the gateway of 

NUF as local caching. Based on the idea of using Counting Bloom filter (CBF) to store 

state machine [23], MLCBF is used to cache the URL classification results to minimize 

the memory requirements.  

Based on the idea of using CBF to store state machine [23], MLCBF is used to cache 

the URL classification results. Restated, the cell counter CCCC of MLCBF is used to 
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store the classified integer of hf (URL)hf (URL) directly, not used in the way of its original 

design; as a counter of a specific hf (key)hf (key). 

Fig. 28 illustrates the proposed model of using MLCBFs in a client engine of NUF. 

Initially, when a URL is extracted by the client engine from HTTP request, it is 

searched in the local MLCBF by hf (URL)hf (URL). If the URL is not found, the client engine 

sends the URL as an analysis request to the network server for classification. The 

analysis response is <URL, integer>. After the client engine receives the result, it 

inserts <hf (URL)hf (URL),integer> into the local MLCBF. Next time when the same URL gets 

into the engine, the classification result can be found locally. 

About the related works of GUF and NUF, a wide range of techniques have been 

proposed for enhancing web applications, like web access security, URL forwarding 

and lookup engine [78], and web proxy caching [7]. Web content filtering is one of 

popular approaches to provide web access security. The key function of this method 

is the classification on web pages. In [79], it provides a hierarchical structure for 

classifying a large collection of web content. In the works of [80],[81],[82], different 

machine-learning-based methods are used to perform web content filtering. 

Although those methods provide accurate filtering results, it seems to take too much 

time to process each web page by multiple intelligent techniques. In contrast, NUF 

and GUF are more appropriate for ISP, enterprise, and SOHO networks. 

URL blacklist is another common method to implement web filtering engine. 

Allowing HTTP access or not depends on comparing the URL of an HTTP request to 

 

Fig. 28. The model of network-based URL filtering. The basic ideas are to use caching for analysis 
results and hashing structure as data representation. 
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the URLs in the blacklist. In [83], URL filtering is performed based on caching 

mechanism. In [84], a Wu-Manber-like matching algorithm with a support of CRC32 

is used in a URL filtering system. In [85], two functions are proposed for hashing the 

signatures of URLs which can get efficient URL lookup performance. In sum, similar 

to GUF, the above works store blacklist in the local filtering engines, and they 

therefore have to update the databases periodically. 
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5. Conclusions 

This paper has explored how to efficiently replicate key-and-state information of 

stateful SPEs in an HAC to provide service consistency. We propose a new compact 

data representation, called Multi-Level Counting Bloom Filter (MLCBF), to employ 

the effect of insertion distribution over MLCBF levels for storing and synchronizing 

stateful data of a large number of active flows. Our extensive experiments show that 

MLCBF considerably reduces the amount of resource requirements in terms of 

bandwidth/memory costs and low constant operation latency as compared to 

precise replication. Especially, MLCBF-FA outperforms other imprecise replication 

methods in the areas of false rates, search costs, and operational time. 

The proposed replication methods have been implemented by Linux as a real 

platform of HAC. Both our analysis and extensive experiments indicate that the 

performance of MLCBF is very promising under heavy traffic loads. Trace-based 

simulation shows that MLCBF reduces network and memory requirements typically 

by 94.7% and 90.9% for URL categorization, and reduces 61.54% of bandwidth 

consumption for TCP state replication. For URL membership replication, the resource 

reduction rates of MLCBF range from 90.27% to 94.82%.  

We have also proposed three improvements on replication. First, a supporting 

structure can be used to not only reduce the number of unsuccessful searches 

significantly of MLCBF-FA but also reduce the costs of successful searches. Second, a 

self-tuning scheme for TCP flows has been introduced to control replication cost. The 

testbed and trace-based experiments have shown that adaptation by flow lifetime 

and CPU utilization can alleviate the loading from short-flow replication, protect the 

majority of the Internet traffic, and offer an optimal throughput dynamically. At last, 

an orthogonal scheme used to compress incremental messages improves bandwidth 
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consumption of multi-state replication. 
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