

國立清華大學

資訊工程學系

博博博博 士士士士 論論論論 文文文文

Efficient and Adaptive Stateful Replication in

High Availability Clusters

適用於高可用度叢集之高效能且動態調整

的狀態複製機制

研 究 生：馮乙軒

指 導 教 授：黃能富 教授

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

1

內容內容內容內容

Abstract .. 2

1. Introduction .. 3

1.1. Background and Related Works ... 6

1.2 Motivation and Design Goals ... 11

2. Stateful Replication in HA Clusters Using Hashing Structures 13

2.1 Membership Replication by CBFs in Firewalls .. 13

2.2 Evaluations of TCP Membership Replication in Firewalls by Real Packet

Trace Files ... 29

3. Multi-Level Counting Bloom Filter (MLCBF)... 43

3.1 Properties of MLCBF-FA ... 45

3.2 Example: Replication of Traffic Classification .. 52

3.3 MLCBF as Key-and-State Representation ... 56

3.4 Symbol Replacement for MLCBF .. 58

3.5 Dynamic Lazy Insertion on Stateful Replication .. 60

3.6 Implementation and Testbed Setup for MLCBF .. 65

4. Evaluations of Stateful Replication Using MLCBFs .. 68

4.1 Replication for State-Machine Tracking .. 68

4.2 URL and TCP Membership Replication .. 72

4.3 Testbed Study for DLI and SPEs in AA Scheme .. 74

4.4 Other Potential Applications ... 76

5. Conclusions ... 81

References ... 83

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

2

Abstract

Kinds of stateful stream process engines (SPEs) track a large number of concurrent

flow states and replicate them to backups to provide reliable functionality in high

availability clusters (HACs). Under high traffic loads, existing solutions in such HACs

are expensive because of precise stateful replication. In this dissertation, I study a

suite of two methods to address this issue: randomization on replication messages

and a replication scheme designed for when system is going to be overloaded.

Two new hierarchical structures called Flow Digest (FD) and Multi-Level Counting

Bloom Filter (MLCBF) are proposed as low resource-consuming solutions of stateful

replication. To the best of my knowledge, it is the first time that randomization has

been introduced for stateful replication of HAC in the literature. Analysis and

extensive tests are employed to evaluate performance and tradeoffs of the proposed

techniques. Most importantly, MLCBF is quite as simple and practical to implement

and maintain.

Furthermore, an adaptive scheme, called as dynamic lazy insertion, is designed to

prevent replication from overloading system and optimize pass-through performance

of HAC dynamically. Testbed evaluation demonstrates its feasibility and effectiveness

in real situation.

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

3

1. Introduction

High Availability Clusters (HACs) are widely deployed on the highly-valuable links (e.g.,

the highest bandwidth links) of enterprises, campuses, and ISP networks. Fig. 1

shows that an HAC is composed of a number of stateful stream processing engines

(SPEs) [1],[2] that process input stream (e.g., assembled TCP segments or URL

requests) continuously, perform stateful tracking by finite state machine (FSMs), and

produce output in real-time. Many stateful SPEs only need a simple key-and-state

storage (called as state table) to manage the stateful results (i.e., states) of

continuous tracking. If such state is lost, SPE will not possibly return an expected

output.

In HAC, the SPEs of identical functionality (e.g., traffic classification and intrusion

prevention) must cooperate to handle a failure and flow migration due to load

balancing [3]. Because the computation of stateful SPE can be considered as

deterministic (i.e., the same output by the same sequence of input [4]), SPE can

produce correct output by owning the tracking result so far of a flow. Thus, SPE

utilizes passive replication [5],[6] to synchronize the state changes to its backup SPEs

to ensure consistent service from the point of views of end hosts.

As shown in Fig. 1, all SPEs in HAC share a LAN reserved for replication in practice

and employ replication management protocol (RMP) to maintain state consistency.

Yet, the efficiency of replication is critical for the performance of SPEs and HAC. My

study on real testbed shows that replication using precise update messages can incur

considerable resource costs, including CPU, memory, and bandwidth requirements.

Under heavy traffic loads, an HAC certainly will not scale well with the maximum

deployment number of SPEs because high bandwidth traffic on replication. Second,

the pass-through throughput of HAC is limited to the minimum performance of a

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

4

sequence of SPEs on a pass-through link. SPE not only processes pass-through input

stream, but also synchronizes its state information over network and stores incoming

replicas to state table. I find that resource contention inside SPE between

pass-through and replication tasks impedes the performance severely. However,

pass-through processing must be optimized for the overall performance of HAC.

In this dissertation, my focus is to provide an efficient RMP for key-and-state

replication amongst SPEs in HAC. Two kinds of stateful replication are considered:

state-machine replication (or state replication) and membership replication (e.g.,

[7],[8],[9],[10]). State replication refers to the task of synchronizing the key and state

transition (e.g., from 2 to 8) of an active flow (or item) to the backup SPEs. The

flow-state change is in the range of 0 and NN (state 0 indicates a deletion). In

membership replication, the information whether a flow is in-set or not is

propagated.

I present a new compact data structure, called Multi-Level Counting Bloom Filter

(MLCBF), and specifically show how this data representation by randomization can be

used to improve the performance of stateful replication. Analysis and extensive

experiments are employed to explore the properties of my algorithms and evaluate

replication efficiency by several metrics, including accuracy, maximum achievable

load, search costs, resource consumption, and operational latency. The results show

that my methods reduce the requirements of stateful replication on network and

memory significantly, and also provide it with small and constant latency time.

Next, I propose an adaptive method to prevent system from being overloaded by the

replication of TCP flows, which is the majority of the Internet traffic. The intuition is

to prioritize the pass-through processing over replication at system overload to

maintain optimal throughput dynamically. This self-tunable method measures

system utilization and flow lifetime distribution to adjust its decision adequately.

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

Testbed evaluation demonstrates its feasibility and effectiveness in real situation.

Fig. 1. A practical example of SPEs employing replication in an HAC of active/backup scheme. Primary

and backup SPEs of TCP tracking, traffic classification, and URL categorization, are located on two

pass-through links. Two edge switches distribute traffic according to HA scheme. For the general data

flow inside SPE, the numbers in cycles and squares represent the steps of pass-through and

replication processing. Notice the pass-through throughput of HAC is limited to the minimum of the

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

6

1.1. Background and Related Works

1.1.1 High-Availability Clusters and Operation Modes

Availability Clusters (HACs) are widely deployed on the highly-valuable links (e.g., the

highest bandwidth links) of enterprises, campuses, and ISP networks. Generally, an

HAC consists of pairs of stateful stream processing engines (SPEs) for functionalities

such as TCP tracking and URL categorization. The goals of HACs are to automatically

counter planned outages (e.g., a system upgrade) and unplanned outages (e.g., a

hardware failure), avoid a possible bottleneck to optimize throughput, and, most

importantly, remove single point of failure.

For redundancy, if an SPE on the pass-through link in operation is out of service,

pass-through traffic (e.g., TCP flows) is passed to the backup link (i.e., a failover)

immediately. SPEs of identical functionality in an HAC must maintain key-and-state

consistency among them to ensure consistent service in case of a failure.

Figure 1 illustrates four statuses of a generic HAC which contains two sequences of

SPEs which are connected by two pass-through links. The SPEs process pass-through

traffic and replicate key-and-state information simultaneously to their backups

through replication links.

Two distinct HA schemes are generally available, i.e., active-backup (AB) scheme and

active-active (AA) scheme. Figure 2a illustrates, in AB scheme, the load-balancing

switches on the boundary of HAC direct all traffic to the primary link normally. As

shown in Fig. 2b, if a failure on the network link is detected, the switches then

redirect the traffic to the backup pass-through link. Notably, in Figs. 2a and 2b, the

SPEs of TCP state tracking and URL categorization perform stateful replication

according to the input stream in real time.

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

Figure 2c demonstrates that, in active/active (AA) scheme, the edge switches of HAC

distribute traffic loads evenly across the pass-through links as well as ensure that a

connection is sent to the same link bi-directionally. In both HA schemes, SPEs rely on

Fig. 2. Four statuses of stateful HACs consisting of dual-string pass-through links: (a) normal state of

active/backup scheme, (a) failover of active/backup scheme, (c) normal state of active/active scheme,

and (d) failover of active/active scheme. Notably, the blue and green dotted lines represent replication

traffic. The red solid lines indicate the pass-through traffic from and to the Internet.

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

8

replication for reliable service in face of failure and flow migration by edge switches

due to load balancing. Finally, the network failure on the pass-through link in Figs. 2b

and 2d is recovered as soon as possible by network operators in practice. Then, the

traffic loads of HAC are processed by following those shown in Figs. 2a and 2c again

after the recovery.

1.1.2 Reliable Transport Solutions

In [2], the issue of fault-tolerant SPEs by active replication is discussed. In contrast,

we focus on the operational performance of an HAC by passive state replication.

State machine replication is a popular technique to support reliable services.

OpenBSD uses the pfsync to replicate state information of the IP Filter. The ct_sync

integrates tightly with the netfilter to give a Linux solution. Both the pfsync and

ct_sync rely on the propagation of at least three precise messages for a flow via

multicasting. To support fault-tolerant transport protocols, many solutions have

been proposed such as fault-tolerant TCP [11],[12],[13],[14],[15],[16] OS mechanism

[17],[18], and new protocols [19],[20]. However, achieving reliable service remains a

challenge because end-to-end reliability is limited to the weakest communication

segment. Our work complements these studies by focusing on the HA techniques.

1.1.3 Variants and Applications of Legacy Bloom Filters

By using a bit vector V of length m and k independent hash functions with range

[1,m], a standard Bloom filter (SBF) [21],[8] yields an extremely compact and

one-way data structure that supports the membership queries to a set A = {a1, a2,

a3,…, an} of n elements in constant time. The Bloom filter causes the space

requirement to fall significantly below the information theoretic lower bounds for

error-free data structures and can reduce the space by at least one order of

magnitude. It achieves this efficiency at the cost of a small false positive rate, but has

no false negatives. The term false positive describes the item not in the set is

classified as being in the set in a query. The term false negative describes the item in

the set is classified as not being in the set in a query. There is a tradeoff between the

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

9

size m, the number k, and the possibility of false positive f as the following Equation

1 and it will give a minimum value when nmk /2ln ×= . Fig. 3 depicts the theoretical

error rate with 4 or 8 hash functions and maximum active connections respectively

versus different bit-vector sizes. For example, for n = 1M and k = 4, if we choose m =

1M×10 = 10M (bits), then the f will be equal to 1.2%.

km

kn

ef)1(
−

−≈

The SBF and its variants are widely used in practice when the storage is at a premium

(e.g., the memory space is too valuable to store the large volume of data) or an

occasional false positive is tolerable (e.g., [7]).

DLCBF [22],[23],[24] is a simple and practical alternative to CBF. Compared to CBF,

DLCBF saves a factor of two at least on memory for the same PFPPFP . For state and

membership replication, motivated by Multi-level Hash Table [25],[26],[27],[28], we

introduce skewness to DLCBF to improve the run-time costs, PFPPFP , and space

utilization, and retain its benefits of simple construction, small filter size, and, most

importantly, single message per update. To the best of our knowledge, our work is

the first attempt of using MFFs to minimize the resource requirements of stateful

replication. Other examples of using imprecise representation in replication are

distributed metadata management [29] and resource routing on P2P networks

[30],[8]. Finally, many variants of Bloom filters [21] have been presented, including

filter compression (e.g., [31],[32],[33]). By contrast, symbol replacement provides

another possibility by converting incremental messages in real-time, instead of

compressing the filter itself.

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

Fig. 3. False positive rates in log scale vs. bit-vector sizes under different maximum concurrent

connections that a primary holds.

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

256 512 1024 2048 4096 10240 20480 40960

Bloom Filter Size (Kbit)

F
al

se
 P

os
it

iv
e

P
ro

ba
bi

li
ty

k=4, n=256k

k=4, n=512k

k=4, n=1024k

k=8, n=512k

k=8, n=1024k

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

11

1.2 Motivation and Design Goals

In my preliminary tests, the performance of TCP state replication (6 states for each

flow) is measured to understand the bottlenecks of stateful replication. The

observations from the results can be viewed as the motivations of this work.

First, Fig. 1 shows the architecture of SPE of two existing precise replication solutions:

OpenBSD pfsync and Linux ct_sync. In receiver, both replication and pass-through

loads share the same state table. This makes free entries and semaphore locks of

state table become another type of resources. The long-lasting flows replicated from

a sender may occupy considerable entries which are only of use when necessary (e.g.,

a failover and flow migration). In addition, high-rate short flows aggravate resource

contention of receiver, thereby interfering with performance.

Second, an intuitive example is used to explain the cost of precise replication:

assume that steady flow rate is 20k connections per sec (cps), a precise replication

message contains <four-tuple,state> whose size is 100 bits, and update interval is 30

sec. Then, a single update introduces 20k(cps)x6(states)x30(sec)=3,600k messages

and 360Mb of memory/network costs. Obviously, precise replication incurs

considerable costs into SPEs and replication links under high-rate traffic. The

utilization law tells us that the reduction on resource requirements (e.g., latency per

insertion or bandwidth consumption per update) increases the maximum number of

task completions per time unit; namely, the capacity of SPE and scalability of HAC.

Third, Counting Bloom Filter (CBF) [7],[8] and variants are widely used by

membership replication of network applications (e.g., [7],[8],[9],[10],[29],[30]).

However, the bandwidth cost by CBF for state replication is higher than precise

replication for some applications like traffic classification. Finally, CPU load is

dominated by the number of incoming pass-through packets and replication tasks.

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

12

When system is overloaded, pass-through processing must get more resources.

Replication should be de-prioritized for optimal pass-through throughput.

Motivated by above observations, my design goals are: 1) an architectural separation

of pass-through and replication processing, 2) an efficient hashing structure for

stateful replication at very low runtime costs. The structure has to be as simple to

implement and maintain as possible for high-speed SPEs, and, 3) finally, a scheme to

prioritize pass-through tasks over replication ones for optimal pass-through

throughput at system overload.

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

13

2. Stateful Replication in HA Clusters Using

Hashing Structures

2.1 Membership Replication by CBFs in Firewalls

In contrast to existing membership replication solutions in HACs, Flow Digest (FD)

[9],[10] improves the replication procedures by two factors: (1) the new primary only

references the state table when it takes over the traffic processing and (2) a new data

structure is designated to save bandwidth requirement. The FD scheme can be

divided into three phases: summary, update and recovery. They are described briefly

as follows.

In the summary phase, the primary collects all active entries in state table into an FD

structure which is constructed based on the Bloom filter which will be described later.

During the update phase, a message is sent to the slaves by multicasting and a slave

only saves the received data without any operation on its state table. The scheme

shifts to the recovery phase after a failover, and the new primary reconstructs the

state table in a packet-driven fashion by querying the stored FD structure (i.e., a

backup SBF) to see whether an incoming TCP packet might be active classified by the

old primary. If it seems true, the packet passes the recovery process. Otherwise, the

new primary drops the packet.

The SBF and its variants are widely used in practice when the storage is at a

premium (e.g., the memory space is too valuable to store the large volume of data)

or an occasional false positive is tolerable (e.g., [7]).

2.1.1 Bloom Filters as FD Representation

To improve the bandwidth utilization, instead of notifying the slave about every

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

change to every state entry, the main idea of FD is to provide a snapshot of the

primary state table and therefore it requires much less frequent propagations of

state changes. As shown in Fig. 4, the proposed method keeps a data structure which

contains two filters in the memory of a primary, including a counting Bloom filter

(CBF) [7],[8] and an SBF. For example, to check a flowID against CBF and SBF

summary, a flowID is hashed with k hash functions (In Fig. 4, k = 4) and, after

applying the modulus to resulting values by size m, the bits corresponding to the

results in filters are checked. In practice, an FD structure is implemented by an m-bit

array where each bit is associated with a counter (whose size is b bits). The

operations to maintain an FD data during the summary phase include:

• Insertion for a new flowID. When the primary changes its state entry of a

connection as established, it then inserts the connection to the CBF by hashing

the flowID and incrementing all resulting counters by 1. When a counter

overflow occurs, this counter stays at its maximum value. With the identical

hash functions and size m, an SBF, a bit-wise array, is used to provide the

Fig. 4. An FD example to summarize the existing active connections. Two Bloom filters are used in an

FD structure and the primary only sends the SBF to slaves.

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

15

abbreviated information of the CBF and the corresponding bit is set from 0 to 1

when the associated counter is increased from 0 to 1.

• Deletion for a flowID. When a state entry is removed from the state table due

to a timeout of inactivity or a connection termination, the counters of CBF

touched by hashing results of the flowID are decremented by 1. When a

counter deletion causes a value in the CBF to change from 1 to 0, the

corresponding bit in the SBF is reset to 0.

In the update phase, two message formats are used according to update sizes. In a

high connection-rate environment, the primary sends the SBF to slaves directly to

achieve lower update overhead. One can thus view an update as the snapshot of a

state table propagating outward from the primary. As described before, except for

shifting to the recovery phase, the state table in a slave will not be accessed, clearly

quite different from current SRPs, and this prevents the slave from merging every

incoming message its local state table in real-time. Every update by sending entire

SBF is self-contained, so that the slave just replaces the stored data with a received

SBF directly.

Sending an SBF (e.g., 4,096K bits) to slaves is clearly not economical at all in a slow

traffic environment (say, below 1,000 cps), because the update information

contained in an SBF may be only slight different from the one before it. This makes

the incurred overhead exceed the benefits of the proposed method. An alternative is

to use a difference mechanism which forms an update message (called difference

message) issuing changes. A difference message is composed of a list of 32-bit

entries and every entry uses the most significant bit for specifying whether the bit

should be set to 0 or 1 and the rest bits for specifying the SBF index to be modified.

The choice of which message format to use will depend on what the size of an

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

16

update will be. Obviously, if the difference between two updates is small, it is more

saving to use difference messages rather than entire SBF.

After a failover, a new primary comes up and enters to the recovery phase. It bases

on the backup SBF from the old primary to process the incoming traffic and

reconstruct its state table in a packet-driven fashion. A SYN packet will not be filtered

by the backup SBF. When there is a non-SYN TCP packet arriving and it can not be

found in a state table lookup, the new primary performs a membership testing on

the backup SBF and the bits corresponding to the result are checked. If all bits are

positive, then the new primary accepts this connection into the state table. The

duration of a recovery process is equal to the default timeout of a state entry (say, 60

to 120 seconds).

Two possible errors in FD are defined:

• False hit: A connection is not active for the old primary, but the backup SBF

answers a positive for the query.

• False miss: A connection is active for the old primary, but the backup SBF

indicates it is not.

Two possibilities for cause of a false miss: the false negative from the backup SBF and

the state inconsistency between the primary and slave. The problem of state

inconsistency will be discussed later. In FD, using a counting Bloom filter as the

representation of active connections incurs small false positive and false negative

rates. The false miss affects the performance of pass-through TCP traffic, because the

packets of a misclassified connection will be dropped continuously in general,

including all re-transmissions. In order to reduce the probability of yielding an

overflow event (the cause of a false negative), the counters in our array need to be

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

17

large enough to avoid the counter overflows. On the other hand, the counter size

needs to be made as small as possible to save main memory. According to the

analysis of [7],[8], it reveals that 4 bits per counter should be sufficient for most

applications, so do the counters of a CBF.

Occasionally, a Bloom filter may return false positives. Note that the false hits do not

affect the recovery of active connections. But, this means that a packet without the

previous 3-way handshake procedure passes through the filtering of new primary

because the SBF returns a positive answer in the recovery phase. A network attack

may use this as ACK floods to exhaust the system and network resources of victims.

The packet rate of attack was reported as high as 200,000 pkts/s [34],[35]. In the

following, we briefly discuss how to minimize the syndrome of false positives.

First, since the packet reaches the particular endpoint through a false positive,

depending on the implementation of OS, the endpoint either replies back a TCP RST

packet or an ICMP unreachable packet to sender and this rogue ACK packet will be

discovered eventually when the new primary receives this network error packet.

Second, a DDoS prevention module is popularly equipped in a modern firewall or IPS.

When the ACK flood is detected, for optimizing the utilization of state table, the new

primary can enable the aggressive aging [36]. Third, it is noteworthy that false

positives only exist after failing over and the duration of this potential risk is short.

Finally, the failover timing and the parameters of an FD implementation should not

be predictable and open to network attackers. Therefore, we believe that it is difficult

for attackers to use the feature of Bloom filter to bypass the security filtering,

especially when the system uses DDoS detection as a front-end to prevent the state

table explosion [37].

A third kind of error introduced into HA comes from the overhead of failover process,

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

18

including the failure detection and primary election. Instead of an efficient state

replication, a fast network-level failover mechanism is required to minimize failover

overhead.

The number of hash functions influences two competing forces: the probability of

collision and the capability of the discrimination between flowIDs. Besides, in FD, a

larger number of hashes may increase update size in a difference update. We

compare three hash functions. First, MD5 is an open and well established message

digest algorithm and is chosen for its well distributed and fix-sized output values.

Four hash values are built by calculating the MD5 checksum [38] of a flowID, which

yields a 128-bit data, then dividing it into four 32-bit words. The indexes into the SBF

and CBF come from applying the modulus to resulting 4-byte values by size m finally.

Second, a modification of MD5 in [39] (called MD- by ignoring the G, H, and I

functions) is used to improve the throughput and has a close result with MD5. Third,

we use a “fast” hash family based on the shifting, AND, and XOR operations on

flowIDs. Although this solution is less effective than MD5 and MD- in avoiding

collisions, it is characterized by much lower computational overheads and can be

implemented by a limited and simple instruction set (e.g., RISC-based network

processor units).

2.1.2 Update Criteria

In order for the recovery phase to maximize the reconstruction performance, the

backup FD at each slave must be kept most up-to-date with the primary state table of

the primary. Ideally, the primary should continue to propagate the last information

on itself. However, this increases the update overhead, because frequent

propagations of update messages incur a non-trivial cost on system performance and

should be avoided. The key to the scalability of an HA cluster is to ease the load on

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

19

the system and network. Thus, a backup SBF without updated in real-time helps the

scalability; rather, the update can be triggered upon simply a periodic basis, or a

threshold basis. These two methods are transparent in operation. The update can

occur upon a regular time interval, or when a certain percentage of the variation on

existing connections compared to the previous update is not reflected to a slave.

That is, FD uses an occasional message burst for providing a table snapshot to

replace the continuous small messages for updating state changes.

Because a failover is likely to be prior to an update event and results in a state

inconsistency, a periodic or threshold-based update method poses a potential risk to

a new primary of dropping the packets of active connections in the recovery phase.

Two approaches are used in the recovery phase to solve the problem: TCP cold start

[40] and the intentional block mechanism.

TCP cold start lies on the assumption that the new primary lies between a trusted

network (e.g., internal network) and an untrusted network (e.g., external network). If

a non-SYN packet which fails on lookups both in the state table and the backup SBF

comes from the trusted network, it will pass the recovery filtering and the state entry

will be instantiated into the state table. However, if the packet is from the untrusted

network, the new primary forwards the packet to the destination by stripping off its

payload and decreasing the sequence number in the header. In this way, if the packet

is indeed from a reliable connection, then the endpoint in the trusted network will

respond this “keep-alive” packet with an ACK. Then, because the ACK comes from

the trusted network, the new primary instantiates the corresponding state entry and

continues as usual.

Using the intentional block mechanism, for the same packet above, the new primary

inserts the corresponding flowID into the backup SBF regardless of packet direction

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

and simply drops the packet. Again, if the connection is active, the source endpoint

will initiate a retransmission. This time, the new primary will get a positive answer

from the backup SBF for the retransmitted packet and forward the packet to its

destination.

In summary, by taking advantage of the state held at the receiver and the sender, in

the recovery phase the new primary can continue the active connections which are

lost in state replication. While supporting these methods introduce additional

bandwidth consumption on the pass-through path, the duration of recovery phase is

short and, more importantly, these schemes relieve the load in propagating the

update messages immediately for state consistency and allow a larger update

interval or threshold to reduce the network overhead.

2.1.3 FD Components and Trade-offs

Besides the update strategies, the FD choices vary in many dimensions and are

intertwined when determining the amount of resource requirements. In this section,

the choices on m and hash functions and their effects are discussed.

Fig. 5. Example: the collision distributions of fast hashing, MD5, and MD- (α =40).

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

21

A. Selecting Table Size

A number of factors impact the choice of the size m. First, in general the memory

needs of FD are determined by nc at the link. Namely, m should vary with the cluster

maximum capacity of a real network, including pass-through and possible migrated

loads. Second, despite a higher bandwidth cost, a larger m is preferred due to a

smaller theoretical error rate as shown in Fig. 6 and a 3% F might be acceptable for

an application of Bloom filter. However, F varies over time and links in practice,

depending on na. For example, the traffic with high connection rate but low

concurrent flows is common for a link before a web server. On the other hand,

backbone links usually remain at loads of 35–85% and contribute both high rate and

high flow number. If na < nc, the partial fulfilled SBF will perform better than an

expected F. Hence, we define the Table Load (L) as na/nc to describe a temporary

density of active flows in the FD structure.

Besides the false ratio, L also affects the amount of incremental updates. As

mentioned before, a SBF-bit alternation is identical to an incremental event. This

indicates that FD with a low na or a big m generates more events for a given

connection rate. Next, we analyze the theoretical probability of an incremental event.

As a dominating metric, the number of events can be used to approximate

bandwidth cost. We consider the occurrence of events that modifies the entry value

of SBF from 0 to 1 (or 1 to 0). The analysis is based on a uniform hashing distribution

over the key space at random.

As observed on the SBF in [7], assume that k hash functions are applied to each key.

After inserting n keys into a table of size m, the probability that a particular bit still

remains 0 is:

kn

m

−

1
1

For the case of CBF, the value of a particular entry has a range of 0 to 2
b
–1 (b bits for

each entry). The probability of an entry value from 0 to 1, and 1 to 0, is represented

as P01 and P10, respectively. For a particular entry in table of size m, after n key

insertions, P01 = Pr (value in the entry is ‘0’I hashed by next insertion) = Pr (hashed

by next insertion) × Pr (value in the entry is ‘0’)

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

22

knk

mm

−

−−

1
1

1
11 (1)

While P10 = Pr (hashed by next deletionI value in the entry is ‘1’) = P (hashed by next

deletion | value in the entry is ‘1’)×P (value in the entry is ‘1’)

1

1

1
1

11
−

−×

kn
kn

mmn
C (2)

This equation for P10 equals to:

kn

mm

k

−

−

1
1

1
 (3)

By above two Eqs. (2) and (3), the amount of incremental messages under different

Table Loads, Ls, and connection rates could be estimated.

B. Selecting Hash Functions

The computation throughput of hash functions are studied by many works (e.g., [39],

[41], [42], [43],[44]) and FD shares similar criteria that hashing should provide an

even distribution and a straightforward computation for high speed links. In FD, we

study the performance of MD5, MD- [39], and fast hashing on x86 platforms.

Although MD5 produces collision-resistant and fix-sized hash codes, the

computations are difficult to optimize [41]. On the other hand, MD-, a modification

of MD5 by ignoring the G, H, and I functions, has a close distribution quality with

MD5 and better throughput. Furthermore, performance can be improved if prime

number calculations are avoided [45]. We then tried simple but “fast” hash functions

to compute 32-bit hash values for a flowID by different combinations of shifting, XOR,

and an AND operation with a prime number. This hashing is characterized by a much

lower computation overhead and can be implemented by a limited and simple

instruction set (e.g., RISC-based network processor units). Our preliminary

experiments show that the throughput of fast hashing and MD- achieve about 5.87

times and 2.45 times higher than that of MD5.

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

23

However, the uniformity of hash distribution is an important consideration for FD to

estimate the size of incremental updates by Eqs. (2) and (3). Given a CBF, the hash

load factorα is defined as na× k/m. That is, the expected collision number falling into

each bin. Fig. 5 shows that fast hashing is much less effective than MD5 and MD- in

hash uniformity. On the other hand, a uniform distribution also avoids unexpected

false hits in the recovery phase. Therefore, we use MD- to strike a proper balance

between hashing uniformity and computation speed and thus k is equal to 4. Finally,

to reduce the hash calculations, the 128-bit digest computed by the insertion is

stored into the state entry and is re-used when deleting the flow.

2.1.4 Preliminary Evaluations of FD Scheme

This section presents the results of simulation (written in C++) to evaluate network

costs of FD and SRPs from low to high connection rates. We consider a stateful

cluster composed of a primary and a slave and this HA cluster processes the

pass-through traffic from internal and external networks. The node-to-node link is

100Mbps which is chosen to model Fast Ethernet and all updates are delivered by

unicast. In this topology, the range of steady connection setup and teardown rates

and active connection duration are 500 to 90,000 cps and 5 to 30 seconds,

respectively. The setup delay (the time elapsed between the first SYN to the first ACK)

is set as 2 seconds [37]. We study 256K, 512K, and 1M active connections and total

simulation time is 3,600 seconds.

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

We experienced with three FD configurations: 1Mb, 2Mb, and 4Mb SBF sizes for

supporting 256K, 512K, and 1M connections respectively. A CBF counter takes up 4

bits. FD has 4 hash functions by calculating 128-bit MD5 outputs from an open

source library. Based on the connection rate and active connection number, one can

convert the thresholds to time intervals, hence, for FD, we only use a periodic

update method and the update interval is from 1 to 30 seconds. Two update

message formats of FD are both compared with current SRPs in the simulation.

Fig. 6. The average bandwidth consumptions under different connection rates of SRP and FD (m=4Mb,

m/n=4). The update interval is 5 seconds. Note that the update of FD is by sending entire SBF.

Fig. 7. The average bandwidth consumptions in log scale under different connection rates of SRP and

FD by different update intervals. Note that the update of FD is done by sending entire SBF and the

y-axis is in log scale.

0

500

1000

1500

2000

2500

3000

3500

4000

5,000 10,000 20,000 30,000 40,000 50,000 90,000

Connection Rate (cps)

A
ve

ra
ge

 B
an

dw
id

th
 C

on
su

m
pt

io
n

(K
by

te
/s

)

current SSP

FD, m=4Mb,m/n=4

1

10

100

1000

10000

5 10 20 30

 Update Interval (sec)

A
ve

ra
ge

 B
an

dw
id

th
 C

on
su

m
pt

io
n

(K
by

te
/s

)

SSP, 5,000 cps

SSP, 10,000 cps

SSP, 20,000 cps

SSP, 90,000 cps

FD, m=1Mb,m/n=4

FD, m=2Mb,m/n=4

FD, m=4Mb,m/n=4

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

25

Following the ct_sync and pfsync, the simulator for current SRPs sends messages for

state insertions, changes, and deletions, and message size is 13 bytes which contains

one flowID and a flag to specify update type. We do not consider the overflow of a

delayed output queue and all messages of current SRPs are sent to the slave in

real-time.

We first show the estimated update cost caused for different connection rates in Figs.

6 and 7 which indicate the bandwidth consumptions of current SRPs and FD by

sending entire SBF. Figure 6 shows that the FD structure to support 1,000,000

connections with 5-second update interval eliminates 46%, 73%, 86%, and 97% of

bandwidth consumption compared to current SRPs at 5,000, 10,000, 20,000 and

90,000 cps, respectively. In Fig. 7, we observe that FD by sending entire SBF provides

a snapshot of the current state table at a moment and the message size is

deterministic for every update regardless of different connection rates. By contrast,

the total number of update messages under a connection rate does not change, thus

current SRPs have fixed costs on network depending on the connection rate of

regular traffic. Therefore, FD requires a less bandwidth as the update frequency

decreases. For example, if the update interval is set to 30 seconds, FD reduces the

bandwidth consumption by 91% to 99% for 1M connections. Thus, the network

overheads of the proposed scheme can be reduced significantly with a larger update

interval. In addition, the network overhead can be improved due to a smaller

maximum connection number n with the same m/n. For example, in Fig. 6, it shows

that FD reduces at least 86% of the bandwidth consumption with 5-second update

interval both for supporting 256K and 512K connections. Second, we also simulate

FD with difference update with low connection rates (not shown in the figure). When

the primary works in a slow traffic environment or with a small update interval, e.g.,

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

26

2 seconds, a difference mechanism is used because the update size is less than m

bits. Compared to current SRPs, the simulation results demonstrate that FD with

difference messages eliminates 20% of the network bandwidth and reduces the

number of update messages by 34% to 37% from 500 cps to 5,000 cps. The above

results explore that the major benefit of the proposed scheme is to improve the

bandwidth utilization, especially at high connection rates.

We study the throughputs of MD5, MD- and fast hash functions by getting 324M sets

of hash outputs (k = 4) without other operations. Our results show that the

throughput of fast filter and MD- filter achieve about 5.87 times and 2.45 times

higher throughput than MD5 filter. Our simulation tests also demonstrate that the

hash function dominates the performance of the proposed scheme.

2.1.5 Discussions

There is essentially no limit to how many nodes can participate in a cluster and the

network and memory overheads introduced by maintaining state consistency

determine the scalability of a replication protocol. The bandwidth needed by current

SRPs scale linearly with the amount of regular traffic passing through the HA cluster

and the number of update messages may grow up to many thousands per second

(e.g., at 20,000 cps). By contrast, the number of bytes needed by an update is at

most a constant value (m bits) and the number of update messages can be

determined by update interval and is smaller than current SRPs. As our simulation

results show, the proposed method requires relatively much less network bandwidth

by sending entire SBF and less update messages by sending difference messages and

therefore is more scalable for state replication than existing methods both for low

and high traffic loads.

Notice the parameters for FD: the number of hash functions k and type (e.g., MD5 or

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

27

fast hash), a bit vector of length m, b additional bits for each CBF cell, update

approach, and n simultaneous maximum connections. These parameters are

negotiated at HA initialization time or when a new node is trying to connect to a

functioning cluster. Recall that the feature of Bloom filters is that they provide a

tradeoff between the storage requirement and accuracy. Thus, if one wants to run

with less bandwidth consumptions for state consistency, this can be achieved by

reducing the size m with possibly slightly increasing of entries into the state table

because of more false positives in the recovery phase. The other approach to reduce

network overhead is to choose an appropriate larger update interval according to the

traffic conditions. Furthermore, by the above settings, FD occupies a total space of

(m + mb + m) bits at most in memory of a primary, i.e., an FD data structure and

difference messages of size m at most, m bits at most to the network for individual

update by sending an SBF or a bulk of difference messages, and m bits in a slave to

store a backup SBF.

2.1.6 Section Summary

For a stateful HA scenario, the current solutions use update messages for state

replication which may use a substantial amount of network bandwidth and this extra

overhead could also reduce the capacity of a cluster to process the regular

pass-through traffic. Moreover, the computation requirements associated to

maintain the state consistency between the cluster nodes result mainly from the

processing of update messages and merging the state changes into the local state

table. Flow Digest (FD) has been proposed to improve existing state replication

protocols by reducing the update overhead for both low and high connection rates.

The main advantage of the proposed method is to reduce the network overheads of

state replication. The simulation results show that the bandwidth consumption of the

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

28

flow digest is much less than that of current implementations. The proposed scheme

by difference messages eliminates 34% to 37% of the network bandwidth and

reduces the number of update messages to the slave by 20%. More importantly, at

high connection rates, the bandwidth consumption can be reduced typically by at

least 86% compared to current solutions.

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

29

2.2 Evaluations of TCP Membership Replication in

Firewalls by Real Packet Trace Files

A stateless HA cluster can be simply achieved by using the stateless mechanisms for

network redundancy (e.g., VRRP [46]) and identical configuration/ruleset. However,

without state replication, all legitimate connections (a.k.a. flows), or even worse

whole user requests, have to be re-established after a failover due to the loss of flow

states in the firewall cluster. On the other hand, in a stateful HA scenario for

firewalling, a state replication protocol (SRP) (e.g., pfsync [47] for OpenBSD [48] IP

Filter [49] and ct_sync [50],[51],[52],[53] for Linux netfilter [54]) provides replication

management and supports reliable connections at cluster-level by switching the

active connections to the secondary firewall node transparently in a failover. Namely,

an SRP is complementary to stateless failure detection by maintaining state

consistency between a firewall node and its backup. Note that both the pfsync and

ct_sync protocols adopt the passive replication and rely on explicit messages to

replicate three in-order state types (i.e., insertion, modification, and deletion) via

multicasting.

Many other solutions have been proposed to provide connection-level reliability such

as fault tolerance in TCP, OS mechanism, and new transport protocols. However,

although these schemes can be deployed, achieving reliable connectivity remains a

challenge. For a user, there is no difference between the service outages due to the

networks and due to the servers. Any near-source or near-destination single-point

failure still hinders the service quality. When network failures are considered, service

availability is often as low as 99%, meaning that a server is out of service for about 15

min a day on average [55]. Furthermore, Boutremans, et al. [56] find that an

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

30

availability degradation of VoIP service results from the reliability problem of routing

equipment. They identify the need for more reliable hardware architecture and fast

protection mechanisms against link failures.

Despite a stateful HA cluster complements flow-level protections by removing the

single-point failure, an SRP also consume network and system resources to protect a

connection. In this paper, we evaluate the costs of different state replication

methods for TCP connections (the majority of Internet traffic) and explore the

tradeoffs from varying a time-triggering parameter to replicate a connection. The

packet traces (see Table I) collected from major Internet backbones and from campus

are used to simulate the replication operations on a prototype implementation.

2.2.1 State Replication Methods Used in Tests

A. Eager and selective replication

In a firewall device, a state entry is used to store the information derived by TCP

stateful tracking from the bi-directional traffic of a TCP flow. As a flow is initialized

and terminated, the corresponding entry is inserted to and removed from the flow

table. Each entry contains two types of flow sub-states: immutable and mutable. An

immutable sub-state flowID, i.e., four-tuple <DstIP, SrcIP, DstPort, SrcPort>, remains

constant and is used to identify a connection. Mutable sub-states may be changed

very frequently, such as the latest packet arrival time, sequence and

acknowledgement numbers, window advertisement and total flow bytes.

Two replication methods are first considered: eager replication and selective

replication. Besides the immutable information, eager replication synchronizes every

change on the mutable information of a flow from SYN to its completion. For

example, many advanced firewalls keep track of the sequence and

acknowledgement numbers and TCP flags continuously to ensure the active flows

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

31

are compliant with the TCP specification in all aspects. To meet these criteria after a

failover, eager replication must be adopted by a stateful firewall cluster for

synchronizing the mutable information.

Though the message sizes of the pfsync and ct_sync both exceed 100 bytes, an

explicit 32-byte-long representation is used to update the following data for

investigating the costs of eager replication.

� flowID

� Sequence and acknowledgement numbers

� Segment size, window scale, and TCP flag

� Timestamp

� Operation and direction flag

Another method, selective replication, synchronizes three state changes (i.e.,

SYN_SENT, ESTABLISHED, and flow completion) only. Actually, both the pfsync and

ct_sync use a strategy similar to selective replication to optimize state copying

operations. In [6], a selective mechanism is used to save the processing time of the

backup server. Furthermore, note that in our evaluation, a 16-byte-long message

(only flowID and operation flags) is used by selective replication to evaluate the

overheads.

B. Flow Digest

The scheme Flow Digest (FD) [9],[10] improves the procedures of state replication

through two factors: 1) an architectural improvement prevents the flow table from

the access by replication traffic before a failover, and 2) a compact data structure

employing randomization (i.e., Bloom filters) is designed to reflect the active flows.

For PN and AN, all established flows are collected into a terse set representation and

synchronized to the backup node by sending a Bloom filter or incremental messages.

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

The scheme shifts to the recovery phase after a failover and the flow table is

reconstructed in a packet-driven fashion by querying the backup Bloom filter.

The memory requirement of FD can be kept small, while still achieving high accuracy.

For example, for supporting 1,000,000 connections in maximum, using 10,000,000

elements, four bits per element, and four hash functions yields a false positive rate

of 1.2% and requires a 7,500-KB memory space; not a concern in today’s equipments.

Though false positives are possible, FD never rejects active flows after a failover

under accurate state replication.

We use the incremental updates to evaluate the overheads of the FD scheme. By

large-size Bloom filters, FD can be viewed as a 2-state replication method to

synchronize established flows and their terminations, where the message size is

32-bit.

C. Host-to-host aggregation

By ignoring the port number at the two endpoints, small replication operations at

the host-level can protect the packets from different TCP flows between the same

host pair. Two observations from Fig. 8 with IPLS-3 provide an initial indication of the

Fig. 8. The maximum number of TCP flows opened at the same time between two endpoints vs the

host-level lifetime distributions (with the IPLS-3 trace)

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

33

potential benefits of host-level aggregation. The distributions of IPLS-1 and AUCK-4

are not shown because they are similar with the results of IPLS-3.

First, Fig. 8 illustrates that parallel connections are observed for all lifetime

distributions, especially parallel degrees less than 5 connections. One presumable

reason is that parallel TCP connections are widely used by kinds of applications, like

web transfers, multi-stream applications, and P2P. For example, web browsers open

parallel connections at the same time to request various objects of a web page. In

[57], the analysis of web traffic shows that nearly all web clients open 4 or fewer

simultaneous TCP connections to transfer the inline contents. In Firefox 2.0 browser,

the default setting for maximum parallel connections per server is increased to 8.

The study also points out that as clients transfer more objects, the likelihood of using

concurrent connections increases. On the other hand, the studies [58], [59] on the

web workloads show that both the number of objects per web page and the number

of distinct server delivering content per page are increasing over the years.

Second, as the host-level lifetime decreases, especially less than 5 sec, we observe a

clear increase of the number of maximum parallel connections. Our flow analysis

shows that many endpoints establish high-degree parallel connections at almost the

same time. This implies the overheads of port-level replication for short flows are

much higher than that of long flows due to the short burst and parallelism. By

aggregating replication operations per source-destination pair, an HA cluster can

counteract these potential overheads.

To evaluate the overheads of host-level aggregation, only the first establishment

event and the last deletion event between the two endpoints are replicated to the

backup node. The message format/size is identical to that of selective replication.

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

34

2.2.2 Flow lifetime vs State Replication Overheads

Thus far, in order to guarantee consistency, state changes in the primary firewall

node are forced to be synchronized precisely. However, this approach is expensive.

Measurements of the Internet traffic have shown that most TCP flows are

short-running [60] and that long flows (e.g., less than 20%) carry a high proportion

(e.g., 85%) of the total traffic bytes [60], [61]. Furthermore, long HTTP sessions of

purchases are more profitable for web sites [62] and should be protected for

successful completion. For web traffic [58], 15% of the TCP connections are

persistent. However, these persistent connections deliver approximately 40% of the

transferred bytes for web objects.

The lifetime and size distributions of the Internet traffic add another dimension to

state replication. The above studies imply that the major costs come from short flows

when doing replication, but focusing on long flows protects the majority of network

traffic (in bytes) and profits. For instance, the efficiency of replicating a flow less than

50 ms is extremely low, particularly when this service is not critical for users. Because

of the increased memory accesses and network operations, the cluster performance

is likely to be impacted negatively due to the heavy loads from an SRP. Clearly, there

is a tradeoff between good pass-through performance in failure-free duration and

minimal recovery overheads after a failover.

A lazy threshold t
threshold

 is used as a time-triggering parameter which refers to how

long a flow has persisted before a replication operation is performed for that flow.

We explore the effects of varying this parameter on the costs of four replication

methods mentioned above. A t
threshold

 = 0 represents the precise replication which

indicates the flow replication is dependent on the state replication method only.

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

35

2.2.3 Evaluations

A. Implementation and packet trace data

The experiments were performed on a testbed consisting of two identical 3-port

machines (Intel Pentium-4 2.0GHz and 512MB RAM) as the cluster nodes. Two nodes

are connected with a 100Mbps LAN (the replication link). As the base-line

implementation, both machines run Linux 2.4.20 with our kernel module and patch

installed. A tasklet implements the stateful tracking subsystem, four replication

schemes, and lazy threshold in the kernel space. The flow table is implemented by a

hash table. The inactivity timeouts for the idle entries in SYN_SENT, ESTABLISHED,

and FIN_WAIT states are 20, 60, and 20 sec, respectively. Two kernel threads are

used to send and receive the packets via UDP multicasting on the replication link.

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

Fig. 9. (a) The traffic reduction and (b) the replication overheads (with the IPLS-1 trace).

Fig. 10. (a) The traffic reduction and (b) the replication overheads (with the IPLS-3 trace).

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

37

We validate four replication methods by the trace-based simulation, which gives us

the imitation of the activities of known backbone/campus networks and a practical

picture of benefits and drawbacks of the given methods. The replication schemes are

applied to the bi-directional 10-min traces of Abilene-I and Abilene-III (denoted as

IPLS-1 and IPLS-3) which were collected from OC-48c and OC-192 links in 2002 and

2004 [63]. Another bi-directional 24-hour packet trace files (denoted as AUCK-4)

from NLANR [63] were captured at the University of Auckland in 2001. All inbound

and outbound packets with the corresponding metadata are read from the trace files

and then sent to the kernel space sequentially as the input packets. At the end of

reading trace data, all active flows are forced to complete and then passed to flow

analysis.

To enable a fair comparison, we ignore purposely the replication for the flows

whose SYN packets were not captured in the trace files, though this leads to an

underestimation of the pass-through traffic (especially long flows) and replication

costs. Furthermore, due to the fact that routes may be asymmetric at the backbone,

there is a minor tuning in stateful tracking.

For setting FD parameters, the maximum number of the allocated state entries in

three traces is 159,394. Therefore, we set the maximum concurrent connections

supported by a cluster node as 200K and set the Bloom filter size as 2,000K elements.

The MD- is used as the hashing functions and the hash number is 4.

B. Trace-based evaluation results

To understand the effects of the imprecise replication, the reductions of the

protected pass-through and replication traffic are studied by tuning the parameter

t
threshold

 from 0 to 20,000 ms. Note that the active flows whose states are already

replicated are referred to as the protected flows. On the other hand, the overhead of

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

38

a replication method is measured by its bandwidth costs and the protected traffic

bytes (TCP payloads). Let Nreplication and Nprotection be the total bytes of transmitted

replication messages and pass-through packets whose states already have been

replicated, respectively. Then, the overhead is defined as (Nreplication)/(Nprotection). Figs.

9 to 11 illustrate the evaluation results in AB scheme of an HAC.

First, it is observed that eager and selective methods are vulnerable to one-way

flows and malicious SYN packets. For example, in IPLS-1 and IPLS-3, 9.9% and 39.2%

of the recycled state entries get stuck in SYN_SENT state. In the case of IPLS-3, the

flow analysis shows that 87.1% of the recycled SYN_SENT entries are allocated by

one-way flows (almost sending only 1 to 3 packets), and the remaining 11% are the

two-packet flows (SYN and RST). In a cluster using eager/selective replication, a short

one-way flow allocates two state entries (in PN/AN and its backup node), which are

recycled and deleted immediately after an inactivity timeout (20 sec in our

simulations). Thus, these one-way flows significantly aggravate the contention on

the system resources of two cluster nodes and bandwidth consumptions on the

replication link. By contrast, because FD and host-level aggregation only replicate the

established flows (namely, from ESTABLISHED state), the number of the deletion

events activated by the SYN_SENT timeouts are much less than those of eager and

selective methods. The measurement of one-way and two-way flows has been the

subject of research in [64].

In Figs. 9a to 11a, when t
threshold

=50 ms, due to the savings of replicating one-way

flows and malicious SYN packets, the reduction ratios of selective replication on the

bandwidth costs are as high as 24.8%, 27.8%, and 16.7% in IPLS-1, IPLS-3, and

AUCK-4. By contrast, the cost reduction ratios of FD and host-level aggregation are

only 0.05%–6.3% by the same t
threshold

. On the other hand, because most TCP flows of

the Internet traffic are short-lasting, they dominate the state replication costs.

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

Except for eager replication, a very clear rise on the replication traffic reductions is

observed when t
threshold

 < 1 sec in three packet traces.

About the reductions on the protected pass-through bytes, Figs. 9a to 11a show that

only 0.09–1.6% of total pass-through bytes are not protected by t
threshold

=50 ms, but

up to 27.8% of the replication traffic are saved for selective replication. For FD in

IPLS-3, reducing 50% (t
threshold

=320 ms), 74.4% (t
threshold

=500 ms), and 88.9%

(t
threshold

=2,000 ms) of the replication traffic excludes only 1.9%, 3.4%, and 11.8% of

Fig. 11. (a) The traffic reduction and (b) the replication overheads (with the AUCK-4 trace).

Fig. 12. The maximum replicated entry number in the backup node (with the IPLS-3 trace) in the

simulation of AB scheme.

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

40

the pass-through bytes. The host-level aggregation has a very similar behavior.

Remember that the resource savings come from the reduced replication operations.

The reductions on the replication costs and protected bytes mirror the cumulative

flow lifetime and size distributions in packet traces. Obviously, the efficiency of

replicating flows longer than 500 ms is much higher than the precise replication. A

small t
threshold

 can be useful for alleviating peak system load, reducing bandwidth

consumption, and protecting the majority of Internet traffic bytes.

In Figs. 9b–11b, we show the overheads of four replication methods. The overheads

of eager replication do not decrease significantly as t
threshold

 increases. This confirms

the high costs of keeping all mutable information consistent between the cluster

nodes. In Fig. 9b, when t
threshold

=0 ms in IPLS-1, the overheads of selective method,

FD, and host-level aggregation are only 7.9%, 2.4%, and 3.3% of the overhead of

eager replication, respectively.

Figs. 9b–11b show that the overheads of the FD scheme are much less than those of

eager and selective replication. For example, in IPLS-3 at t
threshold

=500 ms, FD reduces

99.5%, 79.8%, and 22.9% overheads when compared to eager, selective, and

host-level aggregation methods. Furthermore, though host-level aggregation avoids

the operations for parallel connections, except for t
threshold

< 1 sec in AUCK-4, the

overheads of host-level aggregation are slightly higher than FD. This is because the

message size of the FD incremental update is 32 bits and the size of host-level

aggregation is 16 bytes.

Another important metric is the number of replicated entries in the backup node.

Though this metric may be not critical to an active/backup cluster, the valuable state

entries of an active/active cluster are allocated both by pass-through flows and

replicated flows. Thus, we perform simulations in AB mode to investigate the effects

of t
threshold

 on the maximum number of replicated entries in the backup node. Note

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

41

that, in FD no replicated entry is required in the flow table of the backup node.

For eager and selective methods, Fig. 12 illustrates that varying t
threshold

 from 0 to 50

ms reduces the maximum replicated entry number from 128,852 to 89,425 (a 30%

decrease) due to the effects of one-way flows. A t
threshold

=2,000 ms reduces 45% of

the maximum number of eager/selective replication (from 128,852 to 69,897), while

host-level aggregation reduces it by 44.4 % (from 12,873 to 7,152) at the same

t
threshold

. Fig. 12 also illustrates that parallel connections exist for all lifetimes and

parallelism degree increases as the lifetime decreases. When t
threshold

=50 ms, the

entry number of host-level aggregation is 12,818; only 14.3% of the requirements of

eager/selective replication.

2.2.4 Section Summary

To improve service availability and reliability, the stateful HA firewall clusters are

deployed to remove network single-point failures. In this paper, we perform the

simulation tests by real backbone/campus packet traces to evaluate the costs of four

state replication methods as the possible solutions for firewall clusters with a

tunable time-triggering parameter. To the best of our knowledge, there have been

no cost evaluation results of the flow-level state replication methods over HA

clusters available. We believe that our results also give a practical view to other

technologies using TCP state replication, like transparent TCP-connection migration.

We find that the precise replication overheads for short flows are high, because

most TCP flows are short-running and the short flows are likely to have high-degree

parallel connections. Thus, a small time delay can yield significant reductions on the

bandwidth costs and cluster resources. Typically, reducing 50% and 74.4% of

bandwidth costs only excludes 1.9% and 3.4% of the protection on the pass-through

traffic. Moreover, the overheads of the FD scheme are lowest in nearly all the tests

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

42

we ran. For the active/active clusters, an important metric, the maximum replicated

entry number in the backup node, is investigated. The results show that both the

host-level aggregation and a time trigger larger than 5 sec reduce effectively the

number of replicated state entries. In summary, our investigation highlights the

benefits of the imprecise state replication, including the scheme employing

randomization, the host-level aggregation and the time-delay policy.

Besides above results, we further suggest that an SRP should replicate a TCP flow

from its ESTABLISHED state. This strategy avoids the high costs, such as a high

entry-recycling rate and unnecessary bandwidth consumptions, from very short

one-way flows and malicious SYN packets.

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

43

3. Multi-Level Counting Bloom Filter (MLCBF)

Fig. 20 shows a basic structure of my SPE consisting of MLCBFs. With the same

functionalities of Counting Bloom filter (CBF), Multi-Level Counting Bloom Filter

(MLCBF) allows item deletions and provides membership and multiplicity queries on

a set SS over a universe UU with small error probabilities. MLCBF handles the

insertions and deletions of items with keys easily to change SS dynamically and

features construction simplicity. A query of x 2 Sx 2 S on the filter would always get a

positive answer and a membership query of y =2 Sy =2 S could give a false positive.

As a multi-level structure, the intuition behind MLCBF is to store the most of inserted

items in the largest (i.e., first) level. Then, all operations of MLCBF can be finished

probably in the 1
st

 level. To hold nn items of SS in maximum, MLCBF is a hierarchy of

DD levels (LV1 ; : : : ; LVD ; D ¸ 2LV1 ; : : : ; LVD ; D ¸ 2) with a set of DD independent and uniform hash

functions (h1 ; : : : ; hDh1 ; : : : ; hD), wherein each level comprises different bucket numbers

(BN1 ; : : : ; BNDBN1 ; : : : ; BND). hihi at least provides a (log2BN ilog2BN i)–bit long output. The level sizes are

decreasing linearly by a fixed decreasing ratio R (R < 1R < 1). Let R0R0 as 1 + R1 + ¢ ¢ ¢+ RD¡11 + R1 + ¢ ¢ ¢+ RD¡1.

LV1LV1 holds BN1 = bn=(H ¢ R0)cBN1 = bn=(H ¢ R0)c bucket elements (BEsBEs), and LViLVi holds BNi = bBNi¡1 ¢ RcBNi = bBNi¡1 ¢ Rc

buckets for i ¸ 2i ¸ 2.

Each BEBE consists of H cells (H ¸ 1H ¸ 1) and a load bitmap (LBLB) of II bits to record the

number and location of active cells, which record the information of inserted items.

Each cell holds a cell counter (CCCC , CC-bit) and a fingerprint (FF -bit) from a hash

function hfhf . If the corresponding LBLB bit is not set, a cell is identified as empty or

non-active, and the cell access for query and deletion can be avoided. Let the total

bucket number as BN = n=HBN = n=H . This gives a total memory space bounded by

n ¢ (F + C) + BN ¢ In ¢ (F + C) + BN ¢ I bits.

For MLCBF, I propose two insertion algorithms called MLCBF-First Available

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

44

(MLCBF-FA or FA) and MLCBF-Least Load (MLCBF-LL or LL). For two algorithms, to

insert, query, or delete itemxx, there is DD possible buckets in MLCBF.

For MLCBF-FA, as shown in Algorithm 1, if the item hf (x)hf (x) does not exist in MLCBF,

FA simply places the item to an empty cell of BEiBEi indexed by hi(x) mod BNihi(x) mod BNi with

the smallest ii. Namely, FA tries to insert a new item into lower levels. An item will

only be inserted into LVi+1LVi+1 when the hashed bucket in LViLVi is full. The probing is

stopped until an empty cell or an overflow in LVDLVD. When the empty cell is found, its

CCCC is simply incremented and the corresponding bit in LBLB is set to one.

For MLCBF-LL, if hf (x)hf (x) of a new item xx is not in MLCBF, xx is placed to an empty

cell of the BEBE whose LBLB stores the smallest number of bits set to one amongst DD

associated BEsBEs of xx. In case of a tie, I always place xx to LV1LV1
 like d-left scheme

[24]. Thus, FA allows bucket overflows in LVi (1 · i < D)LVi (1 · i < D). In LL, any bucket overflow is

an error condition. Notice, I check whether hf (x)hf (x) already exists in any BEBE at first

for an insertion to avoid the problem that the same hf (x)hf (x) to be found in several

cells when trying to delete item xx. If so, I simply increase the corresponding CCCC in

insertion.

Algorithm 1 Pseudo-code for FA insertion and search in MLCBF

Function FA-INSERT(key)

1: if SEARCH (key) = 0SEARCH (key) = 0 then

2: for iÃ 1 to DiÃ 1 to D do

3: pos Ã LVi [hi(key) mod BNi]pos Ã LVi [hi(key) mod BNi]

4: for j Ã 1 to Hj Ã 1 to H do

5: if BEpos :LB [j] = 1BEpos :LB [j] = 1 then

6: BEpos [j]:f ingerprint Ã hf (key)BEpos [j]:f ingerprint Ã hf (key)

7: BEpos [j]:CC Ã BEpos [j]:CC + 1BEpos [j]:CC Ã BEpos [j]:CC + 1

8: BEpos :LB [j] Ã 1BEpos :LB [j] Ã 1

9: return 1

Function SEARCH(key)

10: for i Ã 1 to Di Ã 1 to D do

11: pos Ã LVi [hi(key) mod BNi]pos Ã LVi [hi(key) mod BNi]

12: if BEpos:LB 6= 0BEpos:LB 6= 0 then

13: for j Ã 1 to Hj Ã 1 to H do

14: if BEpos :LB [j] = 1BEpos :LB [j] = 1 then

15: if BEpos [j]:f ingerprint 6= hf (key)BEpos [j]:f ingerprint 6= hf (key) then

16: j Ã j + 1j Ã j + 1

17: else return 1

18: else j Ã j + 1j Ã j + 1

19: return 0

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

45

To answer a query of “y 2 S ?y 2 S ?”, one checks whether hf (y)hf (y) is found in DD associated

BEsBEs by SEARCH (key)SEARCH (key). If not, y =2 Sy =2 S . Thus, total D ¢ HD ¢ H probes are required in worst

case and lookup complexity is O(1)O(1). In SEARCH (key)SEARCH (key), because a search naturally

accesses the buckets in the same order as insertion and the wanted item could be

located in LV1LV1 probably, it starts from LV1LV1 and continues till LVDLVD, if necessary. The

lookups on levels are actually independent and can be optimized by parallel

executions.

In a deletion, when the inserted item is found through SEARCH (key)SEARCH (key), the CCCC is just

decremented and the LBLB is clear if the CCCC becomes 0.

3.1 Properties of MLCBF-FA

By employing d-left hashing [24], d-left CBF (DLCBF) [22],[23] uses DD equal-sized

subtables and HH cells in each bucket. Thus, both MLCBF and DLCBF can be extended

in two ways for a number of given cells: one extends the number of hash functions,

DD, and the other changes HH . We unify these by considering FA, LL, and DLCBF using

a two-parameter pair (D;H)(D;H) to compare performance metrics and the tradeoffs. In

the rest of paper, MLCBF-FA(D,H) indicates the setting (DD levels, HH cells per bucket)

of an MLCBF by FA insertion scheme. For the sake of generality, we call FA, LL, and

DLCBF as multi-level fingerprint-based filters (MFFs) to highlight their basic

differences on the construction concept from the Bloom filter-based filters (e.g.,

legacy CBF).

The storage utilization or load of an MFF is defined as the ratio between the number

of items and the total cell number. The load distribution of LViLVi (called as LDiLDi) is

defined as the ratio between the number of items in LViLVi and the total cell number.

The load factor ®® of an MFF measures the expected number of items per bucket

(i.e., active cells per bucket), and ®i®i is the load factor of LViLVi. Finally, if not specified

explicitly, we set RR as 0.5 and FF as 20 bits in our experiments. As described later,

using (4,8) and FF=20-bit yield a PFPPFP less than 3:051 ¢ 10¡53:051 ¢ 10¡5. We believe this is low

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

enough for many practical applications.

A. Maximum Achievable Loads

We have experimentally tried a variety of choices (2 · D · 8; 2 · H · 8)(2 · D · 8; 2 · H · 8) for their

maximum achievable load, LoadmaxLoadmax, and Fig. 13 shows the results

(the simulation

setup is described in Sec. 5.1).

First, except for DD=2, FA has higher LoadsmaxLoadsmax than LL and DLCBF by the same (D;H)(D;H),

especially when DD=8. The LoadsmaxLoadsmax of LL and DLCBF are quite similar to each other.

Second, Fig. 13 indicates an MFF needs n=Loadmaxn=Loadmax cells at least to store nn items in

maximum. For example, to support 105105 items, FA, LL, and DLCBF by (4; 4)(4; 4) need at

least 115,207, 119,189, and 117,994 cells, respectively. Thus, we set up the total cell

number of an MFF that is slightly larger than n=Loadmaxn=Loadmax to prevent bucket overflows

in test (e.g., for 115,207, we round it up to 115,300). Finally, FA(4; 8)(4; 8) is almost as

space-efficient (LoadmaxLoadmax=93.65%) as FA(8; 4)(8; 4) (LoadmaxLoadmax=97.26%) but with four fewer

hash functions. This may imply a smaller latency in a platform without hashing

acceleration hardware.

Fig. 13. Average maximum achievable loads of 10k-trail simulation with different (D;H)(D;H) settings.

Total cell number is 10k.

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

47

B. Storage Utilization and Load Distribution

We now present the analysis of MLCBF-FA. For MLCBF-LL and DLCBF, the

experimental simulations are used to investigate their properties. For simplicity, we

assume the probability of the fingerprint collisions is ignored and item deletion is not

considered in the subsequent analysis. The first task is to compute the expected

storage utilization, LDiLDi, and ®i®i of LViLVi of FA.

If nn items are inserted into a hash table with separate chaining by a uniform hash

function, as the number of elements nn goes to infinity and the average load is ¹¹,

the fraction with load kk is 1

k!
(e¡u¹k)1

k!
(e¡u¹k). Most of the analysis on hashing is based on the

above probability distribution. In MLCBF, for a level with mm BEsBEs , then the

corresponding expected number of items lying in all BEsBEs which have exactly the

load of kk mapped into them is:

 km

µ

n

k

¶

(m¡ 1)n¡k

mn
km

µ

n

k

¶

(m¡ 1)n¡k

mn

To calculate load distribution of FA, let noverflow
LVi

noverflow
LVi

 as the expected number of items left

from LViLVi to be inserted to LVi+1LVi+1, nsuccess
LVi

nsuccess
LVi

 as the expected number of items inserted

to LViLVi successfully. Then:

noverflowLVi
= ninsertLVi+1

=
n

X

j=H+1

(j¡H)¢m¢

µ

n

j

¶

(m¡ 1)n¡j

mn
noverflowLVi

= ninsertLVi+1
=

n
X

j=H+1

(j¡H)¢m¢

µ

n

j

¶

(m¡ 1)n¡j

mn

(3)

If we apply Eq. (3) recursively starting from LV1LV1 with ninsert
LV1

ninsert
LV1

= nn and

nsuccess
LVi

= ninsert
LVi

¡ noverflow
LVi

; i = 1; 2; :::;Dnsuccess
LVi

= ninsert
LVi

¡ noverflow
LVi

; i = 1; 2; :::;D, we can estimate ®i®i as nsuccess
LVi

=BNinsuccess
LVi

=BNi , storage

utilization of LViLVi as nsuccess
LVi

=(BNi ¢H)nsuccess
LVi

=(BNi ¢H), and LDiLDi as nsuccess
LVi

=nnsuccess
LVi

=n. For example, by Eq. (3),

to insert 15k items into an FA(4,8) containing 20k cells, nsuccess
LVi

nsuccess
LVi

 of LV1LV1 to LVDLVD are

10,336, 4,237, 427, and 0; very close to the 10k-trial simulation result: 10,328, 4,237,

432, and 0 in average. Furthermore, by a total cell number nn, the noverflow
LVD

=nnoverflow
LVD

=n of an

FA(D,H) can be computed. Then, Loadmax
FA(D;H)Loadmax
FA(D;H) can be estimated by increasing the load

till noverflow
LVD

noverflow
LVD

 > 0. For instance, the estimated LoadsmaxLoadsmax of (4; 8)(4; 8) and (8; 4)(8; 4) are 94%

and 97%; only 1.7% at most higher than the results of FA in Fig. 13.

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

48

Table I lists the ®i®i and LDiLDiobtained from the analysis and simulation. It outlines the

advantage of MLCBF; the majority of items are located in LV1LV1 (and LV2LV2). The

skewness of LD1LD1 of FA is higher than LL due to insertion strategy. Interestingly, the

values of ®i®i and
P

®i

P

®i of LL are similar to those of DLCBF, and
P

®i

P

®i of FA is smaller

than those of LL and DLCBF; even their ®® values are identical.

C. Successful and Unsuccessful Search Costs

Now, we are ready to compute the successful and unsuccessful search costs of FA. A

search in an MFF starts from LV1LV1, and its cost is measured in terms of the number of

probing cells over levels sequentially. The analysis gives us a clear view of the

TABLE I: RESULTS OF LOAD FACTORS AND LOAD DISTRIBUTION

(D,H) Results Method
Load = 20% Load = 85%

Lv1 Lv2 Lv3 Lv4 Lv1 Lv2 Lv3 Lv4

(4,8)

Exp. AVLF

FA 2.992 0.008 0 0 7.88 7.472 4.528 0.16

LL 1.632 1.616 1.544 1.392 6.808 6.816 6.8 6.792

DLCBF 1.936 1.776 1.52 1.176 7.128 6.904 6.744 6.472

Ana. load

factor

FA 2.992 0.008 0 0 7.896 7.48 4.464 0.128

Exp. AVLD

FA 0.998 0.001 0 0 0.617 0.293 0.088 0.002

LL 0.543 0.226 0.128 0.058 0.534 0.267 0.132 0.066

DLCBF 0.301 0.277 0.237 0.184 0.261 0.253 0.248 0.238

Ana. load

distribution

FA 0.998 0.001 0 0 0.618 0.293 0.087 0.001

(8,4)

Exp. AVLF

FA 1.564 0.06 0 0 3.856 3.736 3.304 1.776

LL 0.804 0.796 0.796 0.796 3.48 3.476 3.332 3.128

DLCBF 1.02 0.992 0.984 0.964 3.944 3.888 3.752 3.508

Ana. load

factor

FA 1.564 0.06 0 0 3.86 3.74 3.3 1.744

Exp. AVLD

FA 0.98 0.019 0 0 0.57 0.276 0.122 0.032

LL 0.505 0.249 0.124 0.062 0.514 0.256 0.123 0.057

DLCBF 0.159 0.155 0.154 0.151 0.145 0.143 0.138 0.129

Ana. load

distribution

FA 0.981 0.019 0 0 0.569 0.276 0.122 0.032

Exp. AVLF: Experimental average load factor of 106106 trails,

Exp. AVLD: Experimental average load distribution of 106106 trails.

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

differences among the MFF algorithms, especially for our implementations, where

there is no special parallel programming optimization.

Let CsCs and CuCu denote the average successful search cost and unsuccessful search

Fig. 14. Experimental and analytic successful search cost (probing cell number) of FA, LL, and DLCBF at

different loads and (D,H). Total cell number is 10k. FF=24 bits.

Fig. 15. Experimental and analytic unsuccessful search cost. Each experimental value is the average of

20-run measurement results. Each run contains 106106 unsuccessful search tests. Total cell number is

10k. FF=24 bits. Notice ACBF does not influence Cu
FACu
FA

.

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

50

cost by measuring cell probing length. For a normal hashing (NH) with separate

chaining in mm buckets, the search costs can be shown by the closed-form

expressions [65]: Cs
NH = 1 + ®

2 ¡
1

2mCs
NH = 1 + ®

2 ¡
1

2m
 and Cu

NH = ®Cu
NH = ®. For an MFF, an unsuccessful search

is always terminated when all levels are probed for an item not existing in the filter.

Therefore, for FA, the unsuccessful search cost can be simply expressed as the sum of

load factors of each level

 Cu
FA =

D
X

i=1

®iCu
FA =

D
X

i=1

®i (4)

For a successful search of FA, let Cs
1Cs
1 denotes the successful search cost where the

wanted item is found in LV1LV1. Like NH by separate chaining, assume the wanted item

is located in LV1LV1, the probing length of a successful search is the number of items

appeared before the item in its bucket plus one, and Cs
1 = 1 + ®1

2
¡ 1

2BN1

Cs
1 = 1 + ®1

2
¡ 1

2BN1

. On the other

hand, if the wanted item is found at LVi; i > 1LVi; i > 1, the search must experience an

unsuccessful search before probing LViLVi. Thus, Cs
iC
s
i for an item in LVi; i > 1LVi; i > 1 can be

expressed as:

Cs
i = 1 +

®i
2
¡

®i
2BNi

+
i¡1
X

j=1

®j; for i > 1Cs
i = 1 +

®i
2
¡

®i
2BNi

+
i¡1
X

j=1

®j; for i > 1

Then, the successful search cost of FA can be modeled as:

 Cs
FA =

D
X

i=1

LDi ¢ C
s
iCs

FA =

D
X

i=1

LDi ¢ C
s
i (5)

By simulation and Eqs. (4) and (5), Fig. 14 shows that the CsCs of FA and LL at high

loads are both lower than those of DLCBF apparently, because the large part of items

of FA/LL are located in LV1LV1. Next, the Cs
F A

Cs
F A

 and Cs
LL

Cs
LL

 of (8,4) are smaller than those

of (4,8), because of their similar LDiLDi but different ®i®i values. In contrast, Cs
DLCBF

Cs
DLCBF

of (4,8) and (8,4) are very close. Finally, in Fig. 15, notice that Cu
F A

Cu
F A

 is clearly smaller

than those of LL and DLCBF, because
P

®i

P

®i of FA is the lowest in the three algorithms.

In summary, Cs
LL

Cs
LL

 is slightly higher than Cs
F A

Cs
F A

and better than Cs
DLCBF

Cs
DLCBF

 obviously.

Cu
F A

Cu
F A

 is the lowest, and Cu
LL

Cu
LL

 is similar to Cu
DLCBF

Cu
DLCBF

.

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

D. False Positive Rates

For an MFF, a false positive occurs if and only if for a query of y =2 Sy =2 S , there exists

x 2 Sx 2 S with hf (x) = hf (y)hf (x) = hf (y) in any BEBE indexed by (hi(y) mod BNi)(hi(y) mod BNi). Namely, the fraction

that this event occurs, called as false positive rate (PFPPFP), is calculated from the

probability that one of all possible cells produces the same fingerprint for y =2 Sy =2 S . Thus,

a higher DD or HH increases Loadmax
(D;H)Loadmax
(D;H), but increase the probability of hash collisions

and resulting PFPPFP .

The PFPPFP of an MFF(D,H) can be upper bounded by D ¢H ¢ 2¡FD ¢H ¢ 2¡F . Thus, MFF(4,8) and FF

=20 bits yield a PFPPFP less than 3:051 ¢ 10¡53:051 ¢ 10¡5 . This PFPPFP is low enough for many

applications, and LoadsmaxLoadsmax of MFF(4; 8)(4; 8) all exceed 90%. Besides the discussion in Sec.

3.5, this is the reason of choosing (4; 8)(4; 8) and FF =20-bit as default settings.

Furthermore, PFPPFP of an MFF can be expressed as

PPF =
D

X

i=1

®i ¢ 2
¡FPPF =

D
X

i=1

®i ¢ 2
¡F

Fig. 16. The measured and expected false positive rates of FA, LL, and DLCBF with (4,8) under different
FF bits and filter loads. Each measured rate is the average of 20-run experiment results. Each run
contains 107107 false-positive tests. Total cell number is 10k.

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

52

Fig. 16 shows the PFPPFP of MFFs. Like CuCu of MFFs, FA has the lowest PFPPFP , and the

PFPPFP of LL and DLCBF are very similar. Finally, compared to CBF, MFFs use less

memory; usually saving a factor of two at least for the same PFPPFP .

3.2 Example: Replication of Traffic Classification

By simulation, traffic classification (TC) is used to demonstrate the characteristics of

MLCBF on state-machine replication. These results are not meant to cover the

tradeoffs and real traffic mixes, but to give insight into practice and applicability of

MLCBF in stateful replication.

Network traffic classification (e.g., [66],[67]) is a typical example that needs state

consistency amongst SPEs. This important technique categorizes packet flows for

various applications, like security, load balancing, billing, and QoS. The most common

approach is to rely on deep packet inspection for searching specific characters in

payloads. The patterns used for identification probably exist only in the particular

segments (e.g., the packets in very beginning of a flow). Thus, by replicating

classification results, these collaborated SPEs readily identify packet flows in face of

SPE failure and flow migration in AA scheme.

We perform a simulation to investigate the performance of imprecise replication

methods. We assume P2P, Skype, and instant messaging use application emulation

by tunneling their communication over well-known ports (e.g., TCP port 80). Thus,

according to a pre-defined state transition diagram (9 states totally), a classified flow

could be reassigned to another state (e.g., from a state of “port 80” to “WWW” or

“P2P”). Notice the transition diagram is not shown for the sake of brevity and a

different FSM does not affect the evaluation results; a transition is processed by all

replication methods for comparison.

The simulation details are as follows: the flow key is TCP four-tuple, and the

maximum flow number of SPE is 20k (i.e., 20k/LoadmaxLoadmax cells for MFF). The

parameters of CBF are described in Sec. 5.1. A simulation consists of 180 rounds.

Initially, a number of items are inserted to the filters by their insertion algorithms

according to a specific filter load. Then, in each round, we insert 2k to 10k new items

with random keys, update their states according to the transition diagram to the

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

53

filters, send the update messages to the network interface, and remove them from

the filters finally. This emulates an SPE of TC deploying replication that processes

traffic for 180 sec at the rate of 2k to 10k cps under different initial filter loads. Figs.

17 to 19 illustrate the simulation results.

Fig. 17 shows the insertion costs of FA are much lower than those of LL and DLCBF,

especially with the assistance of ACBF. The cost of FA(8,4) is less than that of FA(4,8).

This implies FA(8,4) may have a better performance with the support of hash

hardware accelerator and parallel techniques. Furthermore, the lookup and deletion

cost (not shown in the figure) of these schemes closely match their performance of

successful search costs.

Figure 18 shows that the bandwidth consumption of CBF is higher than precise

replication under the flow rates less than 6k cps. When the flow rates are larger than

8k cps, the bandwidth requirements of CBF are improved because table updates are

activated. The bandwidth reductions of MFF methods are 53% to 72%, depending on

(D;H)(D;H), filter sizes, and flow rates. An MFF method is also benefit from table updates

when processing high-rate traffic loading, because a smaller filter size enables the

table update at a lower flow rate. In the test, the sizes of FA(4,8), CBF, and DLCBF(4,8)

are 93 kBs, 195 kBs, and 95 kBs, respectively. By table update, the bandwidth

consumption of an imprecise method is deterministic. MFFs meet the design goal of

a scalable solution [68]; they continue to function gracefully as the load grows due to

constant costs. In contrast, the cost of precise replication is proportional to the

connection rate.

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

By rdtsc [69], Fig. 19 reports the measured CPU cycles of insert()insert() and lookup()lookup()

implementations. First, the cycles increase as the load increases for an MFF and the

Fig. 17. Measured insertion costs in TC simulation. The flow rate is 10k cps.

Fig. 18. Bandwidth reduction of approximate methods as compared to precise replication at different
flow rates and filter loads.

Fig. 19. Average insertion and lookup times of MFFs and CBF at different loads. Flow rate is 10k cps.

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

55

performance of CBF is proportional to the number of hash functions. For any given

load, the insertion cycles of FA are lower than those of DLCBF and LL and ACBF

indeed enhances the performance of FA, especially for insertions. Moreover, FA

provides a considerably better performance than other methods in lookups. For

instance, FA yields an improvement of 2 to 7 times for CBF on lookups. For all

methods, their cycle times of modify()modify() and delete()delete() are similar to those of lookup()lookup().

Second, because MFFs are implemented by level-based hierarchy, increasing DD

drastically impedes the performance. In Fig. 19, the latency of (4; 8)(4; 8) is better than

(8; 4)(8; 4) obviously. In the receiver, the costs of all methods to update the backup filters

for single incremental message are below 550 cycles. In summary, FA has the same

bandwidth reduction ratios with LL and DLCBF, and it outperforms other methods on

the latency, especially with the support of ACBF for insertion.

In simulation, the average time for inserting an item into normal state table at 60%

load is 67,875 cycles; much higher than those of imprecise methods. Though the

measurement on CPU cycles highly depends on the implementation, it gives us a

practical look at the differences among the replication methods and logical

architectures in Figs. 1 and 20. We significantly reduce the latency of replication

processing in the receiver by compact filters and the strategy of architectural

separation.

Finally, for MFFs, we favor setting HH to be a larger and practical value and a smaller

DD according to the above results. Though (4; 4)(4; 4) may be a better choice because of its

lower insertion and search costs, LoadsmaxLoadsmax of MFF(4,4) are only around 84%. We

choose (4; 8)(4; 8) as the default setting due to its balance on LoadmaxLoadmax, filter size, and

latency.

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

3.3 MLCBF as Key-and-State Representation

Fig. 20 illustrates a new design of logical SPE architecture. I improve replication

through two factors: 1) a compact data structure is designated to store and replicate

the state changes, and 2) an architectural separation prevents state table from the

access by replication traffic. This makes state table inaccessible to RMP, alleviates

resource competition, and avoids valuable table entries occupied by the other SPE

before necessary.

In Fig. 20, the state table for storing < precisekey; state >< precisekey; state > can be replaced further by

MLCBF or stateful Bloom filter. This minimizes memory costs effectively at cost of

introducing false error probability on the tracking of pass-through traffic. In my

implementation, I still use a hash table to store precise data to verify the false rates

and error conditions in all experiments.

For key-and-state access, I utilize MLCBF to support insert(key; state)insert(key; state) ,

Fig. 20. New data flow inside SPE using MLCBF as replication data representation.

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

57

modif y(key; state)modif y(key; state), lookup(key)lookup(key), and delete(key)delete(key) operations. 2C ¡ 12C ¡ 1 is equal to

the highest state number. The idea is simply to store the fingerprint hf (x)hf (x) of a key xx

and its state into MLCBF. For example, if the state transition of an URL (i.e., key) is

changed from 2 to 7, the hash signatures of the URL, including h1 ; : : : ; hDh1 ; : : : ; hD of DD levels,

hf (x)hf (x), and digital indices into ABCF, are calculated. Then, the cell is found by

hi(URL) mod BNihi(URL) mod BNi and hf (URL)hf (URL), and the CCCC is updated to 7 accordingly.

In practice, using randomization to represent the flow states may introduce some

types of errors. If the lookup on a non-inserted flow returns a valid state, it is called

as false positive (FP). If no valid state for an active flow, it is called as false negative

(FN). If the returned state is not correct, it is called as an inaccurate state (IS). These

errors are not only introduced by hash functions (i.e., PF PPF P) but probably also by

bucket/counter overflows, fingerprint collisions during dynamic operations, and early

recycling of active flows by memory management.

In update phase, two methods called table-update and incremental (delta) update

are used as the representational units. The table-update copies entire filter and

keeps the bandwidth requirement as constant, which is critical at high flow rates.

However, copying entire filter is clearly not economical at small flow rate or high

update frequency because the filter may be only slightly different from the previous

one. An alternative method is to use delta or incremental messages. The messages of

CBF and MFF are < hashindex; state >< hashindex; state > and < level; bucket; hf (x); state >< level; bucket; hf (x); state >. Though the size

of single message of CBF is smaller than MLCBF, as a Bloom filter-based method, the

message number of CBF is identical to the number of hash functions. Incremental

update can be used in various flow rates while table update gives an upper bound of

communication costs. A sender depends on the total message size at a transfer to

decide whether incremental messages or entire filter should be sent.

Stateful replication can be performed immediately or based on a specific criteria (e.g.,

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

58

periodic or false-rate-control [70]). The first strategy keeps maximum consistency

and the second one usually alleviates CPU loads.

MLCBF can be enhanced by the techniques to handle the counter overflows [33] and

bucket overflows (e.g., by expanding DD) and the techniques like item migrating or

rehashing during an insertion [71],[72]). However, these techniques complicate RMP

and need more network costs. Thus, I simply avoid any overflow by sufficient cells

and CCCC bits.

3.4 Symbol Replacement for MLCBF

If the number of state changes exceeds a threshold (e.g., five), an orthogonal scheme

called symbol replacement can be applied to incremental update for higher

compression ratios for various flow rates.

The idea is similar in spirit to the IP header compression [73] which converts the

constant part of an updating message to a replication number to remove redundant

overhead in each message. There are two types of incremental messages:

uncompressed and compressed. For the first message of an active flow, the sender

gets the first free entry (with an entry ID) in a list to store the constant information

(e.g., for MFFs, they are the fields of level number, bucket index, and fingerprint),

and marks its type as uncompressed. Upon receiving an uncompressed message, the

receiver also gets the first free entry to copy static data. Thus, the immutable parts of

the following messages (marked as compressed) of the flow are replaced by a

replication number (i.e., entry ID). In the receiver, it looks up the entry by the

replication number and decompresses static data to update the backup filter.

It is necessary for symbol replacement to ensure the entry IDs allocated by a flow are

identical both in the sender and receiver. Therefore, it is imperative that the order of

incremental messages chosen by the sender must be followed equivalently at each

receiver. For simplicity, we assume that SPEs communicate by TCP or reliable UDP.

Thus, because the messages are sent in-order, the receiver can execute the same

order of the sender so far.

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

59

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

60

3.5 Dynamic Lazy Insertion on Stateful

Replication

Thus far, to guarantee consistency, state changes are forced to be synchronized

precisely. However, this approach is expensive sometimes, especially when system is

going to be overloaded. To meet the 3
rd

 design goal in Sec. 2.3, I explore an adaptive

mechanism for TCP flows to control replication based on the utilization of system

bottleneck. I assume that system is CPU-bounded. Notice for the systems like

intrusion prevention systems and traffic classification appliances, CPU-bound is not

rare because they are usually deployed in campuses and ISPs to handle high-rate

short flows and traffic over 800Mbps.

Measurements of the Internet traffic have shown that most TCP flows are

short-running [74],[60] and that small long flows (e.g., less than 20%) carry a high

proportion (e.g., 85%) of the total traffic [60],[61]. These studies imply that the

major costs come from short flows when doing replication, but focusing on long

flows protects the majority of network traffic (in bytes) and profits. Furthermore,

though approximate replication performs better in bandwidth and memory

requirements, it might be difficult to significantly alleviate the CPU loads from

replication.

To address this issue, I differentiate between short and longer flows. Dynamic Lazy

Insertion (DLI) is proposed for balancing the replication loading and the protection

on pass-through flows to optimize system throughput. DLI has the advantages of fast

estimation, simple to implement, and no requirement of pre-existing knowledge for

network traffic.

To detect long flows, several metrics can be used, like packet number [62] and

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

61

aggressive flow [3]. For simplicity, I resort to a lifetime-based classification. The term

flow age and flow lifetime are used to indicate the duration time a flow has so far

existed and the total time of a flow from start to completion. The basic idea of DLI is

as follows: a dynamic lazy threshold tthresholdtthreshold is used by incorporating the

information of the CPU utilization and historical flow behavior over the cluster node.

The CPU utilization UmeasuredUmeasured is measured at given time intervals. If UmeasuredUmeasured

exceeds a pre-defined usage threshold UthresholdUthreshold below 100% (i.e., the system

becomes overloaded), tthresholdtthreshold for the next interval is increased to filter more

“shorter” flows. Otherwise, tthresholdtthreshold is decreased. Namely, for a “longer” flow, the

replication is postponed for tthresholdtthreshold. For the flows whose lifetimes are shorter than

tthresholdtthreshold, no operation will be invoked. For some SPEs, focusing on the long flows

improves the resource utilization by fewer socket I/Os and hash calculations, thereby

reducing the false positives and the frequent accesses on the remote state table.

Replication with tthresholdtthreshold > 0 ms is called as lazy replication. Otherwise, it is called as

immediate replication.

For smoother operations on the lifetime measurements, it would be beneficial to

incorporate historical information in DLI. In general, stateful tracking keeps track of

flow lifetimes since booting. The times tmintmin and tmaxtmax are defined as the minimum

and maximum boundaries of lifetime tracking. If the age of a flow exceeds tmaxtmax, then

its lifetime is immediately updated as tmaxtmax to update the longer flows in more

“real-time”. The maximum trigger is identical to the timeout of SYN_SENT state (e.g.,

20 sec [37]). On the other hand, accurate lifetime measurement requires small time

granularity and the interval of periodic clock interrupt (10 ms on most x86 systems)

is set as the minimum bin size. A history array stores the number of total completed

flows and counters for all lifetime bins.

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

62

To compute tthresholdtthreshold, I use cumulative lifetime distribution to map the desired level

of replication degradation. Let’s consider MM discrete levels that are numbered

1; : : : ; M1; : : : ; M from the lowest degradation to the highest one. Level 0 is denoted as the

special case of immediate replication. Let pp denote as a dynamic control parameter

in the range [0; M][0; M] and assume pp is an integer. tthresholdtthreshold is supposed to reduce the

replication operations by a ratio of p=Mp=Mand then improve the system performance. I

therefore suggest a periodic method, in which pp is re-evaluated on a sequence of

time boundaries T1 ; T2 ; : : : ; Ti ; : : :T1 ; T2 ; : : : ; Ti ; : : : and the length between two boundaries is denoted

as TintervalTinterval (say, each 5 sec).

Let tthresholdit
threshold
i denote the minimal flow age between tmintmin and tmaxtmax to be replicated in

the interval Ti+1Ti+1
. Also let tmeasured

i;jtmeasured
i;j denote the threshold of jthjth degradation level

estimated from the lifetime distribution between Ti¡1Ti¡1
 and TiTi

, and tpastjt
past
j the

threshold of jthjth level estimated from the distribution between T0T0 and Ti¡1Ti¡1
, for

j = 0; 1; : : : ; Mj = 0; 1; : : : ; M . To balance the stability and responsiveness, the distributions in the

previous interval TiTi
 and the past history are both used to compute a tthresholdtthreshold for

the next TintervalTinterval
. Thus, two history arrays are used. Then I consider a function Fp(i)Fp(i)

defining tthresholdi+1tthresholdi+1 at time TiTi
 in the following way:

½

Fp(1) = tmeasured
1;0

Fp(i) = (1 ¡RDLI) ¢ Fp(i¡ 1) + RDLI ¢ tmeasured
i;p

½

Fp(1) = tmeasured
1;0

Fp(i) = (1 ¡RDLI) ¢ Fp(i¡ 1) + RDLI ¢ tmeasured
i;p

In the above equation, Fp(i ¡ 1)Fp(i ¡ 1) is equal to tpastpt
past
p . The factor RDLIRDLI is a parameter in

the range [0; 1][0; 1]. RDLIRDLI is set as 0.7 to put a higher weight on the observation of the

Algorithm 2 Pseudo-code of DLI

Function DLI

1: wait for TintervalTinterval
2: if Umeasured > UthresholdUmeasured > Uthreshold then
3: p Ã p + 1p Ã p + 1
4: else
5: p Ã p ¡ 1p Ã p ¡ 1
6: endif

7: calculate the next lazy threshold by Fp(i)Fp(i), update the latest statistics

8: to the past history array, and reset the array of the latest interval
__

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

63

latest interval for better responsiveness. After computing tthresholdi+1tthresholdi+1 , the statistics in

the interval TiTi is updated to the history array for the interval T0T0
 to Ti¡1Ti¡1

. Algorithm

2 describes the self-tuning algorithm. By adjusting pp, I can dynamically control the

replication costs under various traffic mixes, especially CPU utilization. A lower

UthresholdUthreshold (e.g., 60%) leads to a better peak throughput when overloading in price of

an earlier lazy replication. Furthermore, for adapting to the locality of lifetime

distribution, DLI provides more flexibility by making a smaller step size (e.g., 20 ms)

when pp is low and a larger size (e.g., 200 ms) when pp becomes high. Note that the

state changes of a flow whose replication is postponed are still transmitted in-order

to keep RMP simple.

The steps to compute the lifetime threshold (denoted as tthresholdtthreshold) periodically of

Dynamic Lazy Insertion (DLI) is the focus in the rest of this section. Figure 21a

illustrates how to compute the lifetime threshold by a mapping between MM discrete

levels and a cumulative lifetime distribution observed from tmintmin to tmaxtmax. In Fig. 21a,

MM is set to 10, while Level 0 represents no lazy replication. For example, in Fig. 21a,

the lifetime threshold of Level 8 is thus supposed to reduce 80% of replication costs.

Notably, pp is the current degradation level in the range [0; M][0; M] , and pp is

re-evaluated periodically on a sequence of time boundaries T1; T2; : : : ; Ti; : : :T1; T2; : : : ; Ti; : : :.. When

measured CPU utilization (denoted as UmeasuredUmeasured) is larger than a pre-defined CPU

threshold (denoted as UthresholdUthreshold), the degradation of replication operations starts

from Level 1 and continues to Level MM if necessary. Restated, every TintervalTinterval, if

UmeasuredUmeasured > UthresholdUthreshold (i.e., overloading), pp is increased to alleviate the CPU loads

from replication operations. Otherwise, pp is decreased.

Figure 21b depicts the concept and steps of computing lifetime threshold tthresholdtthreshold

at TiTi for the next interval. Assume pp for the interval between TiTi and Ti+1Ti+1 is

increased from Level 2 to 3 due to overloading. Notably, tmeasured
i;3tmeasured
i;3 is computed by

computing the lifetime threshold of Level 3 from the cumulative lifetime distribution

observed between between Ti¡1Ti¡1 and TiTi. Next, tpast3t
past
3 is estimated by the cumulative

distribution observed from T0T0 to Ti¡1Ti¡1. The lifetime threshold tthresholdit
threshold
i for the

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

interval between TiTi and Ti+1Ti+1 is then computed as

tthresholdi = (1 ¡ RDLI) ¢ tpast3 + RDLI ¢ tmeasured
i;3tthresholdi = (1 ¡ RDLI) ¢ tpast3 + RDLI ¢ tmeasured
i;3

In this work, the factor RDLIRDLI is set as 0.7 for better responsiveness.

Fig. 21. a) Mapping between degradation levels and corresponding lifetime thresholds over an observed
cumulative lifetime distribution, and b) an illustration of the steps to compute tthresholdit

threshold
i .

Observed

lifetime

C
u
m
u
la
ti
v
e
d
is
tr
ib
u
ti
o
n
 f
u
n
ct
io
n

Level M (M=10)

100%

50%

tmaxtmaxtmintmin

TiTiTi¡1Ti¡1 Ti+1Ti+1T1T1 T2T2T0T0

tmeasured
i;ptmeasured
i;ptpastpt

past
p

Level 5

(a)

(b)

………

Level 8

tthresholdtthresholdof Level 8

tthresholdi = (1 ¡RDLI) ¢ tpastp + RDLI
¢ tmeasured

i;ptthresholdi = (1 ¡RDLI) ¢ tpastp + RDLI
¢ tmeasured

i;p

Level 3

p = 3p = 3 p = 3p = 3

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

65

3.6 Implementation and Testbed Setup for MLCBF

The experiments were performed on a testbed consisting of two identical 3-port

machines (Intel Pentium-4 2.0 GHz, 512-kB L2 cache, and 1024 MBs RAM) as the SPEs

in HAC. Two SPE nodes are connected with a 100 Mbps LAN (the replication link) and

the external and internal ports are connected with Gigabit Ethernet networks (the

pass-through link). To measure CPU utilization, Linux facility dstat is executed with

1-sec bin. Other statistics, such as update message size, are collected with 5-sec bins.

By the design of Fig. 20 and C language, replication methods, DLI, and symbol

replacement are implemented as a kernel-space module in Linux 2.4.20. As a state

table, a hash table by separate chaining is used to store precise keys, (states)

counters, and metadata.

In this dissertation, four types of traffic generators are used: powerful IXIA machines,

simulator of traffic classification, simulator to analyze the filters, and real traffic

traces. Notice the simulation to study the filter properties is also performed by my

prototype platform. The random keys in test are read from Linux /dev/urandom. The

TABLE III: SIMULATION RESULTS OF URL CATEGORIZATION BY REAL URL COLLECTIONS FROM NLANR [63].

MEMORY AND NETWORK BANDWIDTH REQUIREMENTS OF IMPRECISE REPLICATION METHODS.

Access list name

and time

Total

access

logs

Total

unique

URLs

Mean

URL

size

(bytes)

URL

string

size (kBs)

CBF MLCBF-FA(4,8), FF=20-bit

Mem

(kBs)
Reduction

Net

(kBs)
Reduction

Mem

(kBs)
Reduction

Net

(kBs)
Reduction

bo2(2007/01/09) 241,173 144,852 57 13,534 2,355 82.6% 2,247 83.4% 1,271 90.6% 848 93.7%

bo2(2007/01/10) 207,704 133,420 56 11,384 2,028 82.2% 2,069 81.8% 1,095 90.4% 781 93.1%

rtp(2007/01/09) 3,176,785 1,653,579 59 184,066 31,023 83.2% 32,100 82.6% 16,752 90.9% 9,688 94.7%

rtp(2007/01/10) 2,986,122 1,501,494 58 169,990 29,161 82.9% 29,153 82.9% 15,747 90.7% 8,797 94.8%

sd(2007/01/09) 1,426,885 879,114 55 77,341 13,934 82.0% 13,638 82.4% 7,534 90.3% 5,151 93.3%

sd(2007/01/10) 1,497,891 933,756 55 81,420 14,627 82.0% 14,484 82.2% 7,899 90.3% 5,471 93.2%

TABLE II: IP PACKET TRACES FROM NLANR [63].

IP packet trace name and time
Max. active

TCP flows

Avg. SYN

pkts per sec

IPSL-1 (2001/08/14/09:00 – 09:10) 159,394 1199.12

IPLS-3 (2004/06/01/19:40 – 19:50) 159,210 5796.61

AUCK-4 (2001/04/03) 38,604 308

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

66

prototype of SPE synchronizes its receiver by reliable UDP. For TCP flows, inactivity

timeouts for the entries stayed in SYN_SENT, ESTABLISHED, and FIN_WAIT are 20, 60,

and 20 sec.

For CBF, the number of hash functions is 4, and load factor of CBF (i.e., m=nm=n, the

ratio between the number of filter slots and the number of inserted items in

maximum) is 10. The PF PPF P is about 1.2% in theory.

The hashing throughput is studied by many works. SHA-1 is chosen because of its

available fast implementation. I use an open-source SHA-1 with modification to

support the requirements of DD hash functions, fingerprint and signatures of CBF.

In practice, network traffic is time and link dependent. This makes it impossible to

evaluate all possible traffic mixes. To overcome this limitation, I validate the

proposed methods by trace-based simulation on IP packets and URL access logs. The

environment and parameters of trace-based simulation are identical to those of

testbed experiments. After processing all logs, the FP rates are verified by a round of

TABLE IV: DEFAULT PARAMETER LIST IN EXPERIMENTAL TESTS

 Parameters Description Value

M
F

F

(D;H)(D;H) (level, height) of an MFF (4;8)(4;8)

LoadmaxLoadmax Maximum achievable load 93.65% for FA(4; 8)(4; 8)

RR Decreasing ratio of MLCBF 0.5

FF Fingerprint size 20-bit
D

y
n

a
m

ic
 L

a
zy

 I
n

se
rt

io
n

tthresholdtthreshold Lazy threshold 50 – 2k ms

UthresholdUthreshold
Boundary CPU load

to change tthresholdtthreshold
90%

pp Current lazy level 0 – MM

MM Maximum lazy level 10

tmaxtmax Maximum flow lifetime 20k ms

tmintmin Minimum flow lifetime 10 ms

TintervalTinterval Interval to compute next tthresholdtthreshold 5 sec

RDLIRDLI Responsiveness ratio 0.7

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

67

106106 items with the random keys (as URLs or TCP four tuples) that do not exist in state

table. The FN and IS rates are verified by comparing the precise key and state stored

in state table with the data in filters.

For URL applications, six one-day collections of HTTP requests downloaded from

NLANR [63] are used in analysis. Table I lists the information of traces in detail. URL

string size is the sum of all distinct URL string lengths.

For SPEs on TCP flows, the replication schemes are applied to the bi-directional

10-min traces of Abilene-I, Abilene-III, and the University of Auckland (denoted as

IPLS-1, IPLS-3, and AUCK-4). Table I shows the maximum concurrent TCP flows and

packet arrival rates. For fair comparison, I ignore purposely the replication of the

flows whose SYNs were not captured, though this leads to an underestimation of

pass-through traffic (especially long flows) and replication costs. Furthermore, due to

the fact that routes may be asymmetric at backbone, there is a minor-tuning in TCP

tracking.

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

68

4. Evaluations of Stateful Replication Using

MLCBFs

4.1 Replication for State-Machine Tracking

A. URL categorization

In URL categorization, there are numerous master servers to collect and classify URLs

through the technology of web content classification. As shown in Fig. 1, the

categorization result enables the SPEs in gateway to classify HTTP traffic by URLs. An

operator can thus establish management policy by useful categories, such as

malicious threats and adult content. There are 50 to 90 categories usually, which are

represented by integers.

Usually, an URL request received by an SPE is sent to one of master servers for

classification. A service provider reported that they receive over 100 million requests

for categorization per day. Thus, the caching of categorization results in SPEs can

accelerate pass-through web traffic, alleviate the loading of master servers, and

reduce bandwidth costs among the SPEs and masters.

To study replication performance, a state number, which follows a Poisson

distribution between 1 and 127, is assigned to each distinct URL of a trace file. All

request logs are inserted to state table to find out unique URLs at first, and no URLs

are removed during the experiment. The distinct URLs are then inserted to the filters

to trigger update messages. The number of cells of an MFF is set up according to the

number of total access logs.

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

Table III shows the resource reduction ratios achieved by FA and CBF. We use “URL

string size” as the size of a key to compute memory/network requirements of precise

replication. The memory and bandwidth reduction rates of FA are as high as 90.9%

and 93.1% at least. The results indicate the approximate methods reduce the

resource consumptions of URL categorization significantly.

By FF=20-bit and (4,8), the range of FP rates of MFFs for six collections is from

0.0003% to 0.0012%. The IS rates are all smaller than 0.0014%. The FP and IS rates of

CBF at a loaf factor of 10 are 0.637% and 14.96%. By a load factor of 40 for CBF, they

are 0.0012% and 1.5% at a cost of 4 times memory requirements. The FN rates are

zeros, because of no URL removal and no overflow.

Fig. 22 shows the resulting false rates of MFFs by varying FF . With an FF of 24 bits,

the FP and IS rates are about 0.0001% and the filter size is lower than 21 MBs for

rtp(2007/1/10) at 80% load. The resource requirements and false rates observed in

the tests are likely to be reduced in practice, because it is expected that an SPE and

its backups would not contain so many URLs. It is probably that only a set of the most

frequently accessed URLs would be stored. Finally, the average times of the

insertions and lookups on the state table take 31,566 and 1,759 cycles. By contrast,

Fig. 22. FP and IS rates of MFF-based methods in bo2(2007/1/10) and rtp(2007/1/10) at 80% load for URL categorization.

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

they are only 1,211 and 425 cycles for FA, and 2,426 and 1,210 cycles for DLCBF.

B. TCP State Replication

We tune tthresholdtthreshold from 0 to 2k ms in simulation to understand the performance of

imprecise methods and the effects of lazy replication. Driven by TCP flows from the

traces, replication methods synchronize six state changes, including SYN_SENT,

SYN_ACK_RCV, EST, WAIT_CLS, HALF_CLS, and flow completion, by incremental

update. By Table III, for IPLS-1 and IPLS-3, the total cell numbers of MLCBF, DLCBF

and CBF are 170,848, 173,900 and 2,000,000. For AUCK-4, they are 42,712, 43,400,

and 400,000 cells, respectively. In IPLS-1 and IPLS-3, the sizes of FA, DLCBF, and CBF

are 750 kBs, 764 kBs, and 1,953 kBs; all not a concern for modern equipments.

Figures 23 to 25 illustrate the results of TCP replication in AB scheme. Fig. 23 shows

Fig. 23. Storage utilization of MFF(4,8) in IPLS-3 for a) TCP state replication and b) TCP membership

replication. Only first three levels are illustrated.

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

the storage utilization of MFF in IPLS-3. The oscillation of utilizations in Fig. 23 comes

from inactivity timeouts. Obviously, LV1LV1 and LV2LV2 of FA fill up with the most part of

flows.

In state replication, we found tthresholdtthreshold does not obviously influence the bandwidth

savings of MFFs and CBF. The reduction rates of CBF in AUCK-4 for all tthresholdtthreshold are

around -15.14% as compared to precise replication. By contrast, the reduction rate of

FA is 61.54% and is improved to 71.23% by symbol replacement.

Because most TCP flows are short-lasting, they dominate replication cost. Fig. 24

shows the effects of TCP flow lifetimes on state and membership replication. Fig. 24a

Fig. 24. The effect of tthresholdtthreshold on FA for a) state replication and b) membership replication.

Fig. 25. False rates and operation overheads of CBF and MFF-based methods in IPLS-1 trace for TCP
state replication.

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

72

shows that when tthresholdtthreshold=50 ms, due to the savings of replicating one-way flows [64]

and malicious SYN packets, the reduction ratio of FA is as high as 35.11% in IPLS-3. In

IPLS-3, flow analysis shows that 87.1% of the recycled SYN_SENT entries are allocated

by one-way flows. These one-way flows significantly consume replication bandwidth

unnecessarily.

A clear rise on the replication traffic reductions is observed when tthresholdtthreshold < 500 ms.

For IPLS-3 in Fig. 24a, reducing 53.21% (tthresholdtthreshold=200ms), 75.25% (tthresholdtthreshold=650 ms),

and 78.52% (tthresholdtthreshold=2k ms) of replication traffic only excludes 12% of pass-through

bytes in maximum. Thus, a small tthresholdtthreshold like 500 ms (or ignore the flows less than

six packets [74]) can be useful for alleviating system load, reducing bandwidth

consumption, and still protecting the majority of traffic bytes for TCP replication.

Fig. 25 shows the false rates and operational overheads of TCP state replication in

IPLS-1. Like URL categorization, the false rates of MFFs are much lower than those of

CBF which is not suitable for TCP state replication.

4.2 URL and TCP Membership Replication

A. Comparison to Summary Cache

Summary Cache (SC) [7] can be viewed as a kind of stateful replication; it summarizes

a snapshot of incoming URLs for a proxy by a CBF from scratch and keeps the filters

consistent between its local cache and neighbors as URLs are inserted and deleted.

With the same parameters of URL categorization, we compare the performance of SC

and MFF(4,8) for propagating a snapshot of URL collection.

By incremental updates for rtp(2007/1/10), SC using load factor of 10 transmits

21,252 kBs versus 8,797 kBs of FA. The reduction rates of SC for six collections are

between 81.9% and 88.86% for memory and bandwidth requirements compared to

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

73

precise replication. The reduction rates of MFFs on memory requirements range from

90.27% to 90.9% and the bandwidth reduction rates are between 93.28% and

94.82%. In bo2(2007/1/10), with a load factor of 10 and 4 hash functions, the

average PFPPFP of SC is 0.026305%, but the PFPPFP of FA, LL and DLCBF with an FF of 20

bits are 0.001015%, 0.00173%, and 0.001595%. To achieve a comparable PFPPFP (say,

0.0015%), SC needs a load factor of 40 with 4 hash functions. However, the memory

and bandwidth requirements are increased to 7.40 and 2.32 times of FA.

For SC, more hash functions decrease PFPPFP , but increase the memory accesses and

bandwidth consumption by incremental update. By contrast, FA can reduce PFPPFP

effectively by increasing FF , and the bandwidth cost only increases a little. As a useful

feature of MFF, this avoids the change of (D;H)(D;H) and LoadmaxLoadmax for a smaller .

B. TCP Membership Replication

In [9],[10], Flow Digest (FD) is used to replicate the membership information of

pass-through TCP flows (namely, TCP tracking in Fig. 1). To compare performance, all

methods generate two events (i.e., EST and flow deletion).

Compared to precise replication, the bandwidth reduction rates of FD in the three

traces for tthresholdtthreshold between 50 and 2k ms range from 7.86% to 8.35%, and those of

MFF-based methods are 60.07% to 61.73%. Fig. 24b illustrates, at tthresholdtthreshold=500 ms,

the bandwidth reduction ratio of FA is as high as 95.95% in IPLS-3. Finally, for IPLS-3

without lazy replication, the FP rates of MFFs are all below 0.0008% due to low

utilization as shown in Fig. 23b. Since only the established flows are inserted to the

filters, the overhead from one-way flows is avoided completely.

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

4.3 Testbed Study for DLI and SPEs in AA Scheme

To this end, the testbed study is used to demonstrate feasibility and effectiveness of

DLI. We also show that imprecise replication increases the aggregated throughput of

SPEs on pass-through traffic in AA scheme.

Two connection types, short and long flows, are generated by IXIA machines to

stress the primary SPE. A short flow completes its establishment and termination

quickly (mainly within 10 to 50 ms). The initial values of tthresholdtthreshold and pp are set to 0.

Fig. 26a illustrates the system behavior with precise TCP state replication and DLI.

Initially, HTTP traffic (long flows) is used to measure pass-through (link) throughput.

Then, two sets of short flows (27k and 10k cps) are inserted. With the 1
st

 set, the

throughput degrades dramatically, but CPU does not surpass UthresholdUthreshold. After 2
nd

 set

Fig. 26. a) Behavior of primary SPE with TCP state replication and DLI in AB scheme, and b) The

aggregated throughput of two SPEs of HAC in AA scheme under high-rate short flows.

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

75

insertion, system exhibits saturation. Then, DLI quickly brings CPU to oscillate around

UthresholdUthreshold by adjusting tthresholdtthreshold around 48 to 68 ms.

Because the high-rate short flows almost complete within 50 ms and become

indivisible in degradation, DLI exhibits over-degradation behaviors; over 98% of

replication traffic is eliminated in a TintervalTinterval, where pp = 3 only and tthresholdtthreshold>50 ms.

The problem can be solved by restricting the reduced replicating operations in a

TintervalTinterval in the range [0; p=M][0; p=M] when pp > 0. Though this heuristic takes more steps

to the optimal point, it avoids over-degradation effectively. In Fig. 26a, DLI controls

replication effectively to alleviate CPU load, thereby enhancing the throughput from

77 to 224 Mbps. In contrast, CPU without DLI exhibits saturation by two short-flow

sets. Finally, without replication, the maximum throughput under two sets of short

flows is 259 Mbps in average.

Next, we measure the end-to-end throughput of our HAC in AA scheme consisting of

two SPEs using TCP state replication. In test, two pass-through links of HAC are

stressed by the same rates of short flows at first and the aggregated throughput (i.e.,

pass-through throughput of HAC) of HTTP traffic on two links are measured under

these high-rate flows. Fig. 26b reports that SPEs using imprecise replication

outperforms those by precise one, especially at short-flow rates over 18k cps. For

example, at 27k cps and without DLI, FA improves the aggregated throughput from

716 to 850 Mbps. Moreover, Fig. 26b shows DLI apparently increases pass-through

throughput of HAC at 27k and 36k cps. Finally, at 42k cps, two SPEs are almost

saturated by incoming pass-through packets; even without any replication.

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

4.4 Other Potential Applications

4.4.1 Using MLCBF as Data Representation for Stateful

Replication

Stateful SPEs using replication are widely deployed in kinds of network environments.

Thus, stateful replication using randomization may benefit an application which

employs a set of peers to share information. An example is intrusion detection and

traffic classification on SCTP [20]. SCTP provides fault tolerance by multi-homing

which connects to the Internet over multiple network access links.

The SPEs deployed on different links must synchronize for inspecting SCTP

associations. Our methods can naturally be used in conjunction with the techniques

like cooperative intrusion detection [75] and may be also suitable for other

fault-tolerant SPEs, (e.g., WWW firewalls [76] and VoIP intrusion detection [77]).

4.4.2 Using MLCBF as Local Caching of Network-based URL

Filtering

In ISP, enterprise, and SOHO networks, URL filtering is widely used to prevent users

Fig. 27. The general overview of network-based URL filtering.

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

77

to access unwanted and malicious web sites. Several service and device providers like

Cisco, Websense, Surfcontrol, Blue Coat, and Gemtek provide network-based URL

filtering (NUF) as a solution to classify, monitor, and control web traffic. Figure 27

illustrates the schematic procedure of NUF.

1. The end user browses a page on the web server, and the browser sends an HTTP

request to the web server.

2. After the gateway receives HTTP request, it extracts the URL from the HTTP

request. The URL is then sent to the network servers for analysis, while the

HTTP request is forwarded to the web server simultaneously. For safety, each

gateway needs to be authenticated before sending requests to the network

server.

3. After the network server receives the analysis request, it checks its database to

classify the web site represented by the URL. It then returns an integer

representing the category of URL. Restated, the analysis result of a URL is just an

integer (i.e., categorization ID) which represents a specific category. For example,

“P2P” is represented by integer 2 and “online news” is 30. Notably, there are 50

to 90 categories usually, which are all represented by integers.

4. The HTTP response from the web server is queued for waiting for the decision

by the gateway.

5. After getting the analysis result from the network server, the gateway sends or

blocks the corresponding HTTP response according to the analysis result and

management policy. For example, assume that although the P2P access is not

allowed in an enterprise, the management policy allows for P2P access from an

internal testing laboratory. Consider the classification result of a specific URL is a

web site of P2P forum. If the source IP is in the range of the testing laboratory,

the gateway sends the HTTP response to the end user. Otherwise, it sends a

warning page to the end user.

NUF provides two important benefits over gateway-based URL filtering (GUF) which

analyzes the URLs by simply comparing them with the local database in a gateway

and updating the database continuously.

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

78

1. NUF can employ a cluster of powerful servers to quickly analyze extracted URLs

using multiple complex techniques, including blacklist, web content inspection,

and intelligent behavioral analysis. Moreover, the network servers are able to

cooperate for detecting new malicious URLs more quickly because they collect

and analyze URLs in a bird’s eye view. Such comprehensive capability can

significantly increase the detection coverage and accuracy of URL classification.

2. Compared to GUF, the task of a gateway of NUF is only to extract URLs from HTTP

requests, send them to the network server, and wait for the responses. This

lowers the implementation complexity of a gateway engine of NUF, while the

gateways no longer need to continually update local databases, thereby reducing

administrative cost. Next, simplifying the engine allows the service to be used in

resource-limited devices (e.g., mobile phones) that lack sufficient computing

power but remain as a target of malicious web sites.

However, a service provider of NUF reported that they receive over 100 million

requests for URL categorization per day. The bandwidth consumption amongst the

gateways and network servers is therefore the key factor of the capacity and the

maintenance cost of the service. Furthermore, waiting for the response from the

network server indeed introduces processing delay to web traffic. In our preliminary

tests, the average network latency from our laboratory to three network servers of a

service provider is between 100 to 500 ms. This motivates us to design an efficient

model for NUF to reduce the bandwidth cost between the gateways and network

servers, while accelerate the processing time in the gateways of NUF. The first idea is

the local caching of URL analysis results in the gateways. The second idea is to use a

hashing structure as the data representation of local caching.

To minimize the resource requirements of NUF, MLCBF can be introduced to address

this issue, and specifically we show that how to integrate MLCBF into the gateway of

NUF as local caching. Based on the idea of using Counting Bloom filter (CBF) to store

state machine [23], MLCBF is used to cache the URL classification results to minimize

the memory requirements.

Based on the idea of using CBF to store state machine [23], MLCBF is used to cache

the URL classification results. Restated, the cell counter CCCC of MLCBF is used to

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

store the classified integer of hf (URL)hf (URL) directly, not used in the way of its original

design; as a counter of a specific hf (key)hf (key).

Fig. 28 illustrates the proposed model of using MLCBFs in a client engine of NUF.

Initially, when a URL is extracted by the client engine from HTTP request, it is

searched in the local MLCBF by hf (URL)hf (URL). If the URL is not found, the client engine

sends the URL as an analysis request to the network server for classification. The

analysis response is <URL, integer>. After the client engine receives the result, it

inserts <hf (URL)hf (URL),integer> into the local MLCBF. Next time when the same URL gets

into the engine, the classification result can be found locally.

About the related works of GUF and NUF, a wide range of techniques have been

proposed for enhancing web applications, like web access security, URL forwarding

and lookup engine [78], and web proxy caching [7]. Web content filtering is one of

popular approaches to provide web access security. The key function of this method

is the classification on web pages. In [79], it provides a hierarchical structure for

classifying a large collection of web content. In the works of [80],[81],[82], different

machine-learning-based methods are used to perform web content filtering.

Although those methods provide accurate filtering results, it seems to take too much

time to process each web page by multiple intelligent techniques. In contrast, NUF

and GUF are more appropriate for ISP, enterprise, and SOHO networks.

URL blacklist is another common method to implement web filtering engine.

Allowing HTTP access or not depends on comparing the URL of an HTTP request to

Fig. 28. The model of network-based URL filtering. The basic ideas are to use caching for analysis
results and hashing structure as data representation.

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

80

the URLs in the blacklist. In [83], URL filtering is performed based on caching

mechanism. In [84], a Wu-Manber-like matching algorithm with a support of CRC32

is used in a URL filtering system. In [85], two functions are proposed for hashing the

signatures of URLs which can get efficient URL lookup performance. In sum, similar

to GUF, the above works store blacklist in the local filtering engines, and they

therefore have to update the databases periodically.

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

81

5. Conclusions

This paper has explored how to efficiently replicate key-and-state information of

stateful SPEs in an HAC to provide service consistency. We propose a new compact

data representation, called Multi-Level Counting Bloom Filter (MLCBF), to employ

the effect of insertion distribution over MLCBF levels for storing and synchronizing

stateful data of a large number of active flows. Our extensive experiments show that

MLCBF considerably reduces the amount of resource requirements in terms of

bandwidth/memory costs and low constant operation latency as compared to

precise replication. Especially, MLCBF-FA outperforms other imprecise replication

methods in the areas of false rates, search costs, and operational time.

The proposed replication methods have been implemented by Linux as a real

platform of HAC. Both our analysis and extensive experiments indicate that the

performance of MLCBF is very promising under heavy traffic loads. Trace-based

simulation shows that MLCBF reduces network and memory requirements typically

by 94.7% and 90.9% for URL categorization, and reduces 61.54% of bandwidth

consumption for TCP state replication. For URL membership replication, the resource

reduction rates of MLCBF range from 90.27% to 94.82%.

We have also proposed three improvements on replication. First, a supporting

structure can be used to not only reduce the number of unsuccessful searches

significantly of MLCBF-FA but also reduce the costs of successful searches. Second, a

self-tuning scheme for TCP flows has been introduced to control replication cost. The

testbed and trace-based experiments have shown that adaptation by flow lifetime

and CPU utilization can alleviate the loading from short-flow replication, protect the

majority of the Internet traffic, and offer an optimal throughput dynamically. At last,

an orthogonal scheme used to compress incremental messages improves bandwidth

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

82

consumption of multi-state replication.

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

83

References

[1] M. Stonebraker, U. Cetintemel, and S. Zdonik, “The 8 Requirements of Real-time Stream Processing,” ACM SIGMOD

Record, 2005.

[2] M. Balazinska, H. Balakrishnan, S. R. Madden, and M. Stonebraker, “Fault-tolerance in the Borealis Distributed Stream

Processing System,” ACM Transactions on Database Systems, 2008.

[3] W. Shi, M. H. MacGregor, and P. Gburzynski, “Load Balancing for Parallel Forwarding,” IEEE/ACM Transactions on

Networking, 2005.

[4] F. Schneider, “Implementing Fault-Tolerant Services Using The State Machine Approach: A Tutorial,” ACM Computing

Surveys, 22(4), 1990.

[5] P. Felber and P. Narasimhan, “Experiences, strategies, and challenges in building fault-tolerant CORBA systems,” IEEE

Trans. Comput., 53(5):497–511, 2004.

[6] N. Budhiraja, K. Marzullo, F. B. Schneider, and S. Toueg, “Distributed Systems,” Addison-Wesley, 1993.

[7] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary Cache: A Scalable Wide-area Web Cache Sharing Protocol,”

IEEE/ACM Transactions on Networking, 2000.

[8] A. Broder and M. Mitzenmacher, “Network Applications of Bloom Filter: A Survey,” Allerton, 2002.

[9] Yi-Hsuan Feng, Nen-Fu Huang, Rong-Tie Liu, and Meng-Huan Wu, “Flow Digest: A State Replication Scheme for Stateful

High Availability Cluster,” IEEE ICC, June 2007.

[10] Yi-Hsuan Feng, Nen-Fu Huang, and Yen-Min Wu, “Evaluation of TCP State Replication Methods in Cluster-based Firewall,”

IEEE Globecom, 2008.

[11] L. Alvisi, T. C. Bressoud, A. El-Khashab, K. Marzullo, and D. Zagorodnov, “Wrapping Server-Side TCP to Mask Connection

Failures,” Proc. IEEE INFOCOM, pp. 329-337, 2001.

[12] N. Aghdaie and Y. Tamir, “Client-transparent fault-tolerant web service,” 20th IEEE International Performance, Computing,

and Communications Conference, pp. 209–216, 2001.

[13] R. Zhang, T. F. Abdelzaher, and J. A. Stankovic, “Efficient TCP Connection Failover in Web Server Clusters,” Proc. IEEE

INFOCOM, 2004.

[14] A. C. Snoeren, D. G. Andersen, and H. Balakrishnan, “Fine-grained failover using connection migration,” Proc. 3rd USENIX

Symposium on Internet Technologies and Systems, March 2001.

[15] R. R. Koch, S. Hortikar, L. E. Moser, and P. M. Melliar-Smith, “Transparent TCP connection failover,” Proc. the IEEE Int.

Conf. on Dependable Systems and Networks (DSN’03), June 2003.

[16] M. Marwah, S. Mishra, and C. Fetzer, “TCP server fault tolerance using connection migration to a backup server,” Proc.

IEEE Int. Conf. on Dependable Systems and Networks (DSN’03), June 2003.

[17] F. Sultan, K. Srinivasan, D. Iyer, and L. Iftode, “Migratory TCP: Highly available Internet services using connection

migration,” Proc. the International Conference on Distributed Computing Systems (ICDCS’02), pp. 469-470, 2002.

[18] F. Sultan, A. Bohra, and L. Iftode, “Service Continuations: An Operating System Mechanism for Dynamic Migration of

Internet Service Sessions,” Proc. the Symposium on Reliable Distributed Systems, Oct. 2003.

[19] A. Shieh, A. Myers, and E. G. Sirer, “Trickles: A Stateless Network Stack for Improved Scalability, Resilience and Flexibility,”

Proc. the 2nd USENIX Symposium on Networked Systems Design and Implementation (NSDI’05), pp. 175–188, May 2005.

[20] R. Stewart and C. Mets, “SCTP: New Transport Protocol for TCP/IP,” IEEE Internet Comput., 2001.

[21] B. Bloom, “Space/time tradeoffs in hash coding with allowable errors,” CACM 13, 1970.

[22] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and G. Varghese, “An Improved Construction for Counting Bloom

Filters,” LNCS 4168, 14th Annual European Symposium on Algorithms, pp. 684–695, 2006.

[23] F. Bonomi, M. Mitzenmacher, R. Panigraphy, S. Singh, and G. Varghese, “Beyond Bloom Filters: From Approximate

Membership Checks to Approximate State Machines,” Proc. ACM SIGCOMM, Sept. 2006.

[24] A. Broder and M. Mitzenmacher, ”Using Multiple Hash Functions to Improve IP Lookups,” Proc. IEEE INFOCOM, 2001.

[25] Z. Broder and A. R. Karlin, “Multilevel adaptive hashing,” in ACM-SIAM SODA, 1990, pp. 43–53.

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

84

[26] Kirsch and M. Mitzenmacher, “Simple summaries for hashing with choices,” IEEE/ACM Trans. Networking, vol. 16, no. 1,

pp. 218–231, 2008.

[27] S. Kumar, J. Turner, and P. Crowley, “Peacock hashing: Deterministic and Updatable Hashing for High Performance

Networking,” Proc. IEEE INFOCOM, 2008, pp. 556–564.

[28] Yossi Kanizo, David Hay, and Isaac Keslassy, “Optimal Fast Hashing,” Proc. IEEE INFOCOM, 2009.

[29] Y. Zhu, H. Jiang, J. Wang and F. Xian, “HBA: Distributed Metadata Management for Large Cluster-Based Storage Systems,”

IEEE Transactions on Parallel and Distributed Systems, 2008.

[30] Kumar, J. Xu and E. Zegura, “Efficient and Scalable Query Routing for Unstructured Peer-to-Peer Networks,” Proc. IEEE

INFOCOM, 2005.

[31] M. Mitzenmacher, “Compressed bloom filters,” Proc. ACM PODC, pp. 144–150, 2001.

[32] S. Cohen and Y. Matias, “Spectral bloom filters,” ACM SIGMOD, pp. 241–252, 2003.

[33] D. Ficara, S. Giordano, G. Procissi, and F. Vitucci, “Multilayer Compressed Counting Bloom Filters,” Proc. IEEE INFOCOM,

2008.

[34] Z. Morley Mao, Vyas Sekar, Oliver Spatscheck, Jacobus van der Merwe, Rangarajan Vasudevan, “Analyzing Large DDoS

Attacks Using Multiple Data Sources,” Proceedings of ACM SIGCOMM Workshop on Large-Scale Attack Defense (LSAD),

2006.

[35] P. Vixie, G. Sneeringer, M. Schleifer, Events of 21-Oct-2002. Available: http://f.root-servers.org/october21.txt

[36] S. Gill, “Maximizing Firewall Availability,” Available:

http://www.qorbit.net/documents/maximizing-firewall-availability.htm

[37] Hyogon Kim, Jin-Ho Kim, Inhye Kang, Saewoong Bahk, “Preventing Session Table Explosion in Packet Inspection

Computers,” IEEE Transactions on Computers, 2005.

[38] R. Rivest, “The MD5 Message-Digest Algorithm,” RFC 1321, April 1992.

[39] Kang Li and Zhenyu Zhong, “Fast Statistical Spam Filter by Approximate Classifications,” ACM SIGMETRICS Performance

Evaluation Review, June 2006.

[40] M. Handley, V. Paxson, C. Kreibich, “Network Intrusion Detection: Evasion, Traffic Normalization and End-to-End Protocol

Semantics,” In Proceedings of the USENIX Security Symposium, August 2001.

[41] J.D. Touch, “Performance analysis of MD5,” Computer Communication Review, vol. 25, no. 4, pp. 77–86, Oct. 1995.

[42] Z. Genova and K. Christensen, “Efficient Summarization of URLs using CRC32 for Implementing URL Switching,” Proc. the

27th IEEE Conference on Local Computer Networks (LCN), pp. 343-344, November 2002.

[43] O. Erdogan and P. Cao, “Hash-av: fast virus signature scanning by cache-resident filters,” Globecom, November 2005.

[44] R. Rivest, “The MD5 Message-Digest Algorithm,” RFC 1321, April 1992.

[45] B. Jenkins, “A hash function for hash table lookup,” Available: http://burtleburtle.net/bob/hash/doobs.html

[46] R. Hinden, “Virtual Router Redundancy Protocol (VRRP),” RFC 3768, April 2004.

[47] Ryan McBride, “Firewall Failover with pfsync and CARP,” Available: http://www.countersiege.com/doc/pfsync-carp/

[48] OpenBSD project. Available: http://www.openbsd.org/index.html

[49] D. Hartmeier, “Design and Performance of the OpenBSD Stateful Packet Filter (pf),” In Proceedings of the USENIX Annual

Technical Conference, 2002.

[50] The High-availability Linux project. Available: http://www.linux-ha.org/

[51] The keepalived project. Available: http://www.keepalived.org/

[52] H. Welte, “ct_sync: state replication of ip_conntrack,” Linux Symposium, 2004.

[53] Alan Robertson, “Linux-HA Heartbeat System Design,” ALS 2000.

[54] Netfilter. Available: http://www.netfilter.org

[55] M. Dahlin, B. Chandra, L. Gao, and A. Nayate, “End-to-end WAN Service Availability,” IEEE/ACM Transactions on

Networking, 2003.

[56] C. Boutremans, G. Iannaccone, and C. Diot, “Impact of link failures on VoIP performance,” in Proc. NOSSDAV, pp. 63–71,

2002.

[57] M. Allman, “A Web Server's View of the Transport Layer,” ACM Computer Communication Review, October 2000.

國立清華大學資訊工程學系博士論文. 研究生:馮乙軒. 指導教授:黃能富教授.

85

[58] F. D. Smith, F. H. Campos, K. Jeffay and D. Ott, “What TCP/IP Protocol Header Can Tell Us About the Web,” Proc. ACM

SIGMETRICS, June 2001.

[59] F. Hernandez-Campos, K. Jeffay, and F. Donelson-Smith, “Tracking the Evolution of Web Traffic: 1995-2003”, Proceedings

of the 11th IEEE/ACM MASCOTS Conference, pp. 16-25, October 2003.

[60] N. Brownlee and K.C. Claffy, “Understanding Internet Traffic Stream: Dragonflies and Tortoises,” IEEE Communications,

Vol. 40, No. 10, pp. 110-117, 2002.

[61] Shaikh, J. Rexford, and K.G. Shin, “Load-Sensitive Routing of Long-Lived IP Flows,” Proc. ACM SIGCOMM, September 1999.

[62] L. Guo and I.Matta, “The War between Mice and Elephants,” In Proc. IEEE Int. Conf. Network Protocols (ICNP), 2001.

[63] NLANR PMA Trace. Available: http://pma.nlanr.net/

[64] DongJin Lee and Nevil Brownlee, “Passive Measurement of One-way and Two-way Flow Lifetimes,” Proc. ACM SIGCOMM,

2007.

[65] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, “Introduction to Algorithms,” Prentice Hall, 1 edition, 1990.

[66] T. Karargiannis, A. Broido, M. Faloutsos, and K.C. Claffy, “BLINC: Multilevel Traffic Classification in the Dark,” ACM

SIGCOMM, 2005.

[67] S. Sen, O. Spatscheck, and D. Wang. Accurate, “Scalable In-network Identification of P2P Traffic Using Application

Signatures,” Proc. WWW, 2004.

[68] A.B. Bomdi, “Characteristics of Scalability and Their Impact on Performance,” Proc. the second international workshop on

Software and performance, 2000.

[69] Intel, “Using the RDTSC Instruction for Performance Monitoring,” Technical report, Intel Corporation, 1997.

[70] Yifeng Zhu, Hong Jiang, “False Rate Analysis of Bloom Filter Replicas in Distributed Systems,” ICPP, 2006.

[71] Kirsch and M. Mitzenmacher, “The Power of One Move: Hashing Schemes for Hardware,” Proc. IEEE INFOCOM, 2008.

[72] R. Pagh and F. Rodler, “Cuckoo Hashing,” Journal of Algorithms, 51(2), pp. 122-144, 2004.

[73] V. Jacobson, “Compressing TCP/IP Headers,” RFC 1144, February 1990.

[74] N. Brownlee, “Some Observations of Internet Stream Lifetimes,” Proc. the Passive and Active Measurement Workshop

(PAM), 2005.

[75] M. Colajanni, D. Gozzi, and Mirco Marchetti, “Enhancing Interoperability and Stateful Analysis of Cooperative Network

Intrusion Detection Systems,” Proc. ACM ANCS, 2007.

[76] L. Desmet, F. Piessens, W. Joosen, and P. Verbaeten, “Bridging the Gap between Web Application Firewalls and web

applications,” Proc. ACM FMSE, 2006.

[77] H. Sengar, D. Wijesekera, H. Wang and S. Jajodia, “VoIP Intrusion Detection Through Interacting Protocol State Machines,”

Proc. IEEE Dependable Systems and Networks (DSN), 2006.

[78] B. Michel, K. Nikoloudakis, P. Reiher, and L. Zhang, “URL Forwarding and Compression in Adaptive Web Caching,” in IEEE

INFOCOM, pp.670-678, March 2000.

[79] Susan Dumais and Hao Chen, “Hierarchical Classification of Web Content,” ACM SIGIR conference, July 2000

[80] P. Y. Lee, S. C. Hui, and A. C. M. Fong, IEEE “An Intelligent Categorization Engine for Bilingual Web Content Filtering,” IEEE

Transactions on Multimedia, vol. 7, no. 6, 2005.

[81] P. Y. Lee, S. C. Hui and A. C. M. Fong, ”Neural Networks for Web Content Filtering,” IEEE Intelligent Systems, 2002.

[82] Mohamed Hammami, Youssef Chahir, and Liming Chen, “WebGuard: A Web Filtering Engine Combining Textual, Structural,

and Visual Content-Based Analysis,” IEEE Transactions on Knowledge and Data Engineering, Vol. 18, No. 2, 2006.

[83] Wang Hui-chang , Ruan Shu-hua and Tang Qi-jie, “The Implementation of a Web Crawler URL Filter Algorithm Based on

Caching,” International Workshop on Computer Science and Engineering, 2009.

[84] Zhou, Z., Song, T. and Jia, Y.,”A High-Performance URL Lookup Engine for URL Filtering Systems,” Proc. IEEE ICC, 2010.

[85] Xiaoming Li and Wangsen Feng, “Two Effective Functions on Hashing URL,” Journal of Software, vol.14, pp. 177-192, 2004.

